A208479 Total sum of the numbers of partitions with positive k-th ranks of all partitions of n.
0, 2, 3, 6, 10, 18, 27, 45, 65, 99, 141, 206, 285, 403, 549, 754, 1011, 1364, 1800, 2388, 3116, 4072, 5257, 6791, 8678, 11093, 14058, 17800, 22380, 28111, 35087, 43748, 54256, 67189, 82831, 101962, 124997, 153011, 186632, 227281, 275905, 334418, 404159, 487714
Offset: 1
Keywords
Examples
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are ---------------------------------------------------------- Partitions First Second Third Fourth of 4 rank rank rank rank ---------------------------------------------------------- 4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1 3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0 2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0 2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0 1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1 ---------------------------------------------------------- The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so the total sum is a(4) = 2+1+2+1 = 6.
Extensions
More terms from Alois P. Heinz, Mar 11 2012
Comments