A208537 Number of 7-bead necklaces of n colors not allowing reversal, with no adjacent beads having the same color.
0, 0, 18, 312, 2340, 11160, 39990, 117648, 299592, 683280, 1428570, 2783880, 5118828, 8964072, 15059070, 24408480, 38347920, 58619808, 87460002, 127695960, 182857140, 257298360, 356336838, 486403632, 655210200, 871930800, 1147401450
Offset: 1
Examples
All solutions for n=3: ..1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1 ..2...2...2...3...2...2...2...2...2...3...3...3...2...2...2...2...2...2 ..1...1...1...1...1...1...3...3...3...2...2...1...3...1...3...1...3...1 ..2...3...2...3...3...3...2...1...2...3...1...3...2...2...1...3...1...2 ..3...2...1...2...1...2...1...3...3...2...3...1...3...3...3...1...2...1 ..1...3...3...3...2...1...3...1...2...3...2...3...1...2...2...3...3...2 ..3...2...2...2...3...3...2...3...3...2...3...2...3...3...3...2...2...3
References
- J. Jeffries, Differentiating by prime numbers, Notices Amer. Math. Soc., 70:11 (2023), 1772-1779.
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Wikipedia, p-derivation.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Cf. A208535.
Programs
-
Mathematica
A208537[n_]:=((n-1)^7-(n-1))/7;Array[A208537,50] (* Paolo Xausa, Nov 14 2023 *)
-
PARI
Vec(6*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Nov 11 2017
Formula
Empirical: a(n) = (1/7)*n^7 - 1*n^6 + 3*n^5 - 5*n^4 + 5*n^3 - 3*n^2 + (6/7)*n.
Empirical formula confirmed by Petros Hadjicostas, Nov 05 2017 (see A208535).
a(n+2) = delta(-n) = -delta(n) for n >= 0, where delta is the p-derivation over the integers with respect to prime p = 7. - Danny Rorabaugh, Nov 10 2017
From Colin Barker, Nov 11 2017: (Start)
G.f.: 6*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
a(n) = ((n-1)^7 - (n-1))/7. (inspired by Hassler's formula in A208536) - Eric M. Schmidt, Dec 08 2017
Comments