A208540 Number of n-bead necklaces of 4 colors allowing reversal, with no adjacent beads having the same color.
4, 6, 4, 21, 24, 92, 156, 498, 1096, 3210, 8052, 22913, 61320, 173088, 478316, 1351983, 3798240, 10781954, 30585828, 87230157, 249056136, 713387076, 2046590844, 5884491500, 16945772208, 48883660146, 141214768972
Offset: 1
Keywords
Examples
All solutions for n=3 ..1....1....2....1 ..2....2....3....3 ..3....4....4....4
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- Marko Riedel et al., math.stackexchange, Proper colorings of necklaces
- Marko Riedel et al., math.stackexchange, Proper colorings of bracelets
Crossrefs
Column 4 of A208544.
Programs
-
Mathematica
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 4]; Array[a, 27] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
Formula
a(2*n+1) = A106366(2*n+1)/2 for n > 0, a(2*n) = (A106366(2*n) + 2*3^n)/2. - Andrew Howroyd, Mar 12 2017