cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A208274 Expansion of phi(q) / phi(q^4) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 0, -4, 0, 0, 0, 10, 0, 0, 0, -20, 0, 0, 0, 36, 0, 0, 0, -64, 0, 0, 0, 110, 0, 0, 0, -180, 0, 0, 0, 288, 0, 0, 0, -452, 0, 0, 0, 692, 0, 0, 0, -1044, 0, 0, 0, 1554, 0, 0, 0, -2276, 0, 0, 0, 3296, 0, 0, 0, -4724, 0, 0, 0, 6696, 0, 0, 0, -9408, 0, 0
Offset: 0

Views

Author

Michael Somos, Mar 12 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Differs from A127391 only at n=0. - R. J. Mathar, Mar 18 2012

Examples

			1 + 2*q - 4*q^5 + 10*q^9 - 20*q^13 + 36*q^17 - 64*q^21 + 110*q^25 - 180*q^29 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]/EllipticTheta[3, 0, q^4], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 04 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)^5), n))}

Formula

Expansion of eta(q^2)^5 * eta(q^16)^2 / (eta(q)^2 * eta(q^8)^5) in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, -3, 2, -3, 2, 2, 2, -3, 2, -3, 2, -3, 2, 0, ...].
G.f. A(x) satisfies A(x)^2 - 2*A(x) + 2 = A134746(x^2), which means (phi(q) / phi(q^4) - 1)^2 + 1 = (phi(q^2) / phi(q^4))^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u^2 - 2*u + 2) * (v^2 - 2*v + 2) - v^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = 4 * u * (u - 1) * (2 - u) * v * (v - 1) * (2 - v) - (u - v)^4.
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = g(t) where q = exp(2 Pi i t) and g() is g.f. for A112128.
a(4*n) = 0 unless n=0. a(4*n + 2) = a(4*n + 3) = 0. a(4*n + 1) = 2 * A079006(n). a(n) = (-1)^n * A208604(n). Convolution inverse is A112128.

A208933 Expansion of phi(q^4) / phi(-q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 48, 80, 128, 202, 312, 472, 704, 1036, 1504, 2160, 3072, 4324, 6036, 8360, 11488, 15680, 21264, 28656, 38400, 51182, 67864, 89552, 117632, 153836, 200352, 259904, 335872, 432480, 554952, 709728, 904784, 1149916, 1457136, 1841200, 2320128
Offset: 0

Views

Author

Michael Somos, Mar 13 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 16*q^4 + 28*q^5 + 48*q^6 + 80*q^7 + 128*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^4] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Apr 25 2015 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(8*k))^5 / ((1-x^k)^2 * (1-x^(4*k))^2 * (1-x^(16*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^16 + A))^2, n))};

Formula

Expansion of eta(q^2) * eta(q^8)^5 / (eta(q) * eta(q^4) * eta(q^16))^2 in powers of q.
Euler transform of period 16 sequence [ 2, 1, 2, 3, 2, 1, 2, -2, 2, 1, 2, 3, 2, 1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A208603.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2*u - 1) * (2*v^2 - 2*v + 1) - u^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = 4 * u * (u - 1) * (2*u - 1) * v * (v - 1) * (2*v - 1) - (u - v)^4.
(-1)^n * a(n) = A112128(n). a(n) = 2 * A123655(n) unless n=0. 2 * a(n) = A007096(n) unless n=0. a(2*n) = A131126(n). a(2*n + 1) = 2 * A093160(n). Convolution inverse of A208604.
G.f.: (Sum_{k in Z} x^(4 * k^2)) / (Sum_{k in Z} (-1)^k * x^(k^2)) = theta_3(x^4) / theta_3(-x).
G.f.: Product_{k>0} ((1 + x^(2*k)) * (1 + x^(4*k)))^3 / ((1 + (-x)^k) * (1 + x^(8*k)))^2.
a(n) ~ exp(sqrt(n)*Pi) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
Showing 1-2 of 2 results.