cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A276562 Array read by antidiagonals: T(m,n) = number of m-ary words of length n with cyclically adjacent elements differing by 1 or less.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 10, 5, 1, 32, 35, 22, 13, 6, 1, 64, 83, 54, 29, 16, 7, 1, 128, 199, 134, 73, 36, 19, 8, 1, 256, 479, 340, 185, 92, 43, 22, 9, 1, 512, 1155, 872, 481, 236, 111, 50, 25, 10, 1, 1024, 2787, 2254, 1265, 622, 287, 130, 57, 28, 11
Offset: 1

Views

Author

Andrew Howroyd, Apr 15 2017

Keywords

Comments

All rows are linear recurrences with constant coefficients. See PARI script to obtain generating functions.

Examples

			Array starts:
   1  1  1   1   1    1    1    1     1     1 ...
   2  4  8  16  32   64  128  256   512  1024 ...
   3  7 15  35  83  199  479 1155  2787  6727 ...
   4 10 22  54 134  340  872 2254  5854 15250 ...
   5 13 29  73 185  481 1265 3361  8993 24193 ...
   6 16 36  92 236  622 1658 4468 12132 33146 ...
   7 19 43 111 287  763 2051 5575 15271 42099 ...
   8 22 50 130 338  904 2444 6682 18410 51052 ...
   9 25 57 149 389 1045 2837 7789 21549 60005 ...
  10 28 64 168 440 1186 3230 8896 24688 68958 ...
		

Crossrefs

Programs

  • Mathematica
    T[m_, n_] := Sum[(1 + 2*Cos[j*Pi/(m+1)])^n, {j, 1, m}] // FullSimplify;
    Table[T[m-n+1, n], {m, 1, 11}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Jun 06 2017 *)
  • PARI
    \\ from Knopfmacher et al.
    ChebyshevU(n,x) = sum(i=0, n/2, 2*poltchebi(n-2*i,x)) + (n%2-1);
    RowGf(k,x) = 1 + (k*x*(1+3*x) - 2*(k+1)*x*subst(ChebyshevU(k-1,z)/ChebyshevU(k,z),z,(1-x)/(2*x)))/((1+x)*(1-3*x));
    a(m,n)=Vec(RowGf(m,x)+O(x^(n+1)))[n+1];
    for(m=1, 10, print(RowGf(m,x)));
    for(m=1, 10, for(n=1, 9, print1( a(m,n), ", ") ); print(); );

Formula

T(m, n) = Sum_{j=1..m} (1 + 2*cos(j*pi/(m+1)))^n. - Andrew Howroyd, Apr 15 2017

A208715 Number of n-bead necklaces labeled with numbers 1..n allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

1, 3, 7, 18, 38, 100, 224, 600, 1498, 4124, 11054, 31347, 87887, 253251, 727867, 2117551, 6159994, 18022052, 52757222, 154874172, 454989753, 1338737083, 3941860229, 11618101775, 34264747423, 101127761931, 298632667837, 882370316215, 2608423280534, 7714578529582
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=3:
..2....2....1....3....2....1....1
..2....2....1....3....3....2....1
..2....3....2....3....3....2....1
		

Crossrefs

Diagonal of A208721.

Extensions

a(17)-a(30) from Andrew Howroyd, Mar 03 2017

A208716 Number of n-bead necklaces labeled with numbers 1..3 allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

3, 5, 7, 12, 18, 34, 56, 111, 207, 427, 859, 1851, 3930, 8672, 19092, 42845, 96243, 218567, 497183, 1138084, 2610226, 6009662, 13861968, 32057868, 74260243, 172351415, 400589343, 932486879, 2173368730, 5071877864, 11849063220, 27711739481
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=4:
..2....1....1....2....2....1....2....1....1....1....3....2
..2....2....1....3....3....1....2....2....2....1....3....2
..2....3....1....3....2....2....3....1....2....1....3....2
..3....2....2....3....3....2....3....2....2....1....3....2
		

Crossrefs

Column 3 of A208721.

Formula

a(2n+1) = (1/2) * (A208772(2n+1) + A078057(n+1)). - Andrew Howroyd, Mar 03 2017
a(2n) = (1/2) * A208772(2n) + (1/4) * (A078057(n) + A078057(n+1)). - Andrew Howroyd, Mar 03 2017

A208717 Number of n-bead necklaces labeled with numbers 1..4 allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

4, 7, 10, 18, 28, 56, 98, 208, 418, 933, 2044, 4777, 11072, 26548, 63672, 155248, 379348, 935278, 2311294, 5741228, 14292966, 35699049, 89339860, 224097602, 563074848, 1417313897, 3572747650, 9019154944, 22797181996, 57693378135, 146168107034, 370712004868
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=3:
..3....2....1....3....4....2....3....1....1....2
..3....2....1....3....4....3....4....1....2....2
..4....2....1....3....4....3....4....2....2....3
		

Crossrefs

Column 4 of A208721.

Formula

a(2n+1) = (1/2) * (A208773(2n+1) + A126358(n+1)). - Andrew Howroyd, Mar 03 2017
a(2n) = (1/2) * A208773(2n) + (1/4) * (A126358(n) + A126358(n+1)). - Andrew Howroyd, Mar 03 2017

Extensions

a(29)-a(32) from Andrew Howroyd, Mar 03 2017

A208718 Number of n-bead necklaces labeled with numbers 1..5 allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

5, 9, 13, 24, 38, 78, 140, 306, 634, 1464, 3326, 8066, 19454, 48534, 121294, 308154, 785222, 2018548, 5203634, 13482426, 35019010, 91251438, 238278314, 623629333, 1635062126, 4294493670, 11296419934, 29757590061, 78489973742, 207281830814
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=3:
..3....1....2....4....5....1....2....2....3....4....1....4....3
..3....1....2....5....5....1....3....2....4....4....2....4....3
..4....1....2....5....5....2....3....3....4....5....2....4....3
		

Crossrefs

Column 5 of A208721.

Formula

a(2n+1) = (1/2) * (A208774(2n+1) + r(n+1)) where r(n) = A057960(n+1). - Andrew Howroyd, Mar 03 2017
a(2n) = (1/2) * A208774(2n) + (1/4) * (r(n) + r(n+1)) where r(n) = A057960(n+1). - Andrew Howroyd, Mar 03 2017

Extensions

a(25)-a(30) from Andrew Howroyd, Mar 03 2017

A208719 Number of n-bead necklaces labeled with numbers 1..6 allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

6, 11, 16, 30, 48, 100, 182, 404, 850, 1996, 4614, 11391, 28002, 71236, 181710, 471437, 1227712, 3226816, 8509930, 22564205, 60002088, 160113626, 428273964, 1148410792, 3085474406, 8305718893, 22394409228, 60474491712, 163531569910, 442782412569
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=3:
..1....5....2....4....5....1....4....1....6....5....3....3....3....4....2....2
..2....5....3....4....5....1....5....1....6....6....3....3....4....4....2....2
..2....5....3....4....6....2....5....1....6....6....3....4....4....5....2....3
		

Crossrefs

Column 6 of A208721.

Formula

a(2n+1) = (1/2) * (A208775(2n+1) + A126360(n+1)). - Andrew Howroyd, Mar 03 2017
a(2n) = (1/2) * A208775(2n) + (1/4) * (A126360(n) + A126360(n+1)). - Andrew Howroyd, Mar 03 2017

Extensions

a(26)-a(30) from Andrew Howroyd, Mar 03 2017

A208720 Number of n-bead necklaces labeled with numbers 1..7 allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

7, 13, 19, 36, 58, 122, 224, 502, 1066, 2528, 5902, 14717, 36557, 93987, 242387, 635990, 1675743, 4457771, 11903835, 31970464, 86144382, 233001926, 631920076, 1718567054, 4684178054, 12794677456, 35012475762, 95976563897, 263496604025, 724445459431
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=3:
..1....1....6....3....6....5....2....4....4....3....5....4....5....7....6....2
..2....1....6....4....7....5....3....4....5....3....6....4....5....7....6....2
..2....1....7....4....7....5....3....5....5....3....6....4....6....7....6....3
..
..1....2....3
..1....2....3
..2....2....4
		

Crossrefs

Column 7 of A208721.

Formula

a(2n+1) = (1/2) * (A208776(2n+1) + A002714(n+1)). - Andrew Howroyd, Mar 03 2017
a(2n) = (1/2) * A208776(2n) + (1/4) * (A002714(n) + A002714(n+1)). - Andrew Howroyd, Mar 03 2017

Extensions

a(22)-a(30) from Andrew Howroyd, Mar 03 2017
Showing 1-7 of 7 results.