A124696
Number of base-3 circular n-digit numbers with adjacent digits differing by 1 or less.
Original entry on oeis.org
1, 3, 7, 15, 35, 83, 199, 479, 1155, 2787, 6727, 16239, 39203, 94643, 228487, 551615, 1331715, 3215043, 7761799, 18738639, 45239075, 109216787, 263672647, 636562079, 1536796803, 3710155683, 8957108167, 21624372015, 52205852195
Offset: 0
- R. H. Hardin, Table of n, a(n) for n = 0..210 [uploaded by Georg Fischer, Apr 05 2021]
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, and Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
- Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], 2024. See p. 5.
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
-
T := (n, k) -> `if`(n=0, 1, add((1 + 2*cos(j*Pi/(k + 1)))^n, j=1..k)):
a := n -> simplify(T(n, 3)): seq(a(n), n=0..28); # Peter Luschny, Mar 28 2021
A285280
Array read by antidiagonals: T(m,n) = number of m-ary words of length n with cyclically adjacent elements differing by 2 or less.
Original entry on oeis.org
1, 3, 1, 9, 4, 1, 27, 14, 5, 1, 81, 46, 19, 6, 1, 243, 162, 65, 24, 7, 1, 729, 574, 247, 84, 29, 8, 1, 2187, 2042, 955, 332, 103, 34, 9, 1, 6561, 7270, 3733, 1336, 417, 122, 39, 10, 1, 19683, 25890, 14649, 5478, 1717, 502, 141, 44, 11, 1
Offset: 3
Table starts (m>=3, n>=0):
1 3 9 27 81 243 729 2187 ...
1 4 14 46 162 574 2042 7270 ...
1 5 19 65 247 955 3733 14649 ...
1 6 24 84 332 1336 5478 22658 ...
1 7 29 103 417 1717 7229 30793 ...
1 8 34 122 502 2098 8980 38928 ...
1 9 39 141 587 2479 10731 47063 ...
1 10 44 160 672 2860 12482 55198 ...
Rows 3-32 are
A000244,
A124805,
A124806,
A124807,
A124828,
A124843,
A124851,
A124852,
A124857,
A124858,
A124864,
A124892-
A124894,
A124898,
A124935,
A124947,
A124948-
A124958,
A124994,
A124998.
-
diff = 2; m0 = diff + 1; mmax = 12;
TransferGf[m_, u_, t_, v_, z_] := Array[u, m].LinearSolve[IdentityMatrix[m] - z*Array[t, {m, m}], Array[v, m]]
RowGf[d_, m_, z_] := 1 + z*Sum[TransferGf[m, Boole[# == k] &, Boole[Abs[#1 - #2] <= d] &, Boole[Abs[# - k] <= d] &, z], {k, 1, m}];
row[m_] := row[m] = CoefficientList[RowGf[diff, m, x] + O[x]^mmax, x];
T[m_ /; m >= m0, n_ /; n >= 0] := row[m][[n + 1]];
Table[T[m - n, n], {m, m0, mmax}, {n, m - m0, 0, -1}] // Flatten (* Jean-François Alcover, Jun 16 2017, adapted from PARI *)
-
TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
RowGf(d,m,z)=1+z*sum(k=1,m,TransferGf(m, i->if(i==k,1,0), (i,j)->abs(i-j)<=d, j->if(abs(j-k)<=d,1,0), z));
for(m=3, 10, print(RowGf(2,m,x)));
for(m=3, 10, v=Vec(RowGf(2,m,x) + O(x^8)); for(n=1, length(v), print1( v[n], ", ") ); print(); );
A220062
Number A(n,k) of n length words over k-ary alphabet, where neighboring letters are neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 4, 2, 0, 0, 1, 5, 6, 6, 2, 0, 0, 1, 6, 8, 10, 8, 2, 0, 0, 1, 7, 10, 14, 16, 12, 2, 0, 0, 1, 8, 12, 18, 24, 26, 16, 2, 0, 0, 1, 9, 14, 22, 32, 42, 42, 24, 2, 0, 0, 1, 10, 16, 26, 40, 58, 72, 68, 32, 2, 0, 0
Offset: 0
A(5,3) = 12: there are 12 words of length 5 over 3-ary alphabet {a,b,c}, where neighboring letters are neighbors in the alphabet: ababa, ababc, abcba, abcbc, babab, babcb, bcbab, bcbcb, cbaba, cbabc, cbcba, cbcbc.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 0, 2, 4, 6, 8, 10, 12, ...
0, 0, 2, 6, 10, 14, 18, 22, ...
0, 0, 2, 8, 16, 24, 32, 40, ...
0, 0, 2, 12, 26, 42, 58, 74, ...
0, 0, 2, 16, 42, 72, 104, 136, ...
0, 0, 2, 24, 68, 126, 188, 252, ...
Columns k=0, 2-10 give:
A000007,
A040000,
A029744(n+2) for n>0,
A006355(n+3) for n>0,
A090993(n+1) for n>0,
A090995(n-1) for n>2,
A129639,
A153340,
A153362,
A153360.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0, add(b(n-1, j, k), j=1..k),
`if`(i>1, b(n-1, i-1, k), 0)+
`if`(i b(n, 0, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n-1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[iJean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
-
TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
ColGf(m,z)=1+z*TransferGf(m, i->1, (i,j)->abs(i-j)==1, j->1, z);
a(n,k)=Vec(ColGf(k,x) + O(x^(n+1)))[n+1];
for(n=0, 7, for(k=0, 7, print1( a(n,k), ", ") ); print(); );
\\ Andrew Howroyd, Apr 17 2017
A188866
T(n,k) is the number of n X k binary arrays without the pattern 0 1 diagonally, vertically or antidiagonally.
Original entry on oeis.org
2, 4, 3, 8, 7, 4, 16, 17, 10, 5, 32, 41, 26, 13, 6, 64, 99, 68, 35, 16, 7, 128, 239, 178, 95, 44, 19, 8, 256, 577, 466, 259, 122, 53, 22, 9, 512, 1393, 1220, 707, 340, 149, 62, 25, 10, 1024, 3363, 3194, 1931, 950, 421, 176, 71, 28, 11, 2048, 8119, 8362, 5275, 2658, 1193, 502, 203, 80, 31, 12
Offset: 1
Table starts:
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243 275807
4 10 26 68 178 466 1220 3194 8362 21892 57314 150050 392836 1028458
5 13 35 95 259 707 1931 5275 14411 39371 107563 293867 802859 2193451
6 16 44 122 340 950 2658 7442 20844 58392 163594 458356 1284250 3598338
7 19 53 149 421 1193 3387 9627 27383 77923 221805 631469 1797957 5119593
8 22 62 176 502 1436 4116 11814 33942 97582 280676 807574 2324116 6689624
9 25 71 203 583 1679 4845 14001 40503 117263 339699 984515 2854281 8277153
10 28 80 230 664 1922 5574 16188 47064 136946 398746 1161634 3385486 9869934
11 31 89 257 745 2165 6303 18375 53625 156629 457795 1338779 3916897 11463989
Some solutions for 5 X 3:
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-
rows = 11; rowGf[n_, x_] = 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 + ChebyshevU[n-1, (1-x)/(2*x)])/ChebyshevU[n, (1-x)/(2*x)])/(1-3*x)^2;
row[n_] := rowGf[n+1, x] + O[x]^(rows+1) // CoefficientList[#, x]& // Rest; T = Array[row, rows]; Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
-
\\ from Knopfmacher et al.
RowGf(k, x='x) = my(z=(1-x)/(2*x)); 1 + (x*(k-(3*k+2)*x) + (2*x^2)*(1+polchebyshev(k-1, 2, z))/polchebyshev(k, 2, z))/(1-3*x)^2;
T(n,k) = {polcoef(RowGf(n+1) + O(x*x^k),k)}
for(n=1, 10, print(Vec(RowGf(n+1) + O(x^11)))) \\ Andrew Howroyd, Apr 15 2017 [updated Mar 13 2021]
A285281
Array read by antidiagonals: T(m,n) = number of m-ary words of length n with cyclically adjacent elements differing by 3 or less.
Original entry on oeis.org
1, 4, 1, 16, 5, 1, 64, 23, 6, 1, 256, 101, 30, 7, 1, 1024, 467, 138, 37, 8, 1, 4096, 2165, 694, 175, 44, 9, 1, 16384, 10055, 3526, 925, 212, 51, 10, 1, 65536, 46709, 18012, 4977, 1156, 249, 58, 11, 1, 262144, 216995, 92140, 27067, 6428, 1387, 286, 65, 12, 1
Offset: 4
Table starts (m>=4, n>=0):
1 4 16 64 256 1024 4096 16384 65536 ...
1 5 23 101 467 2165 10055 46709 216995 ...
1 6 30 138 694 3526 18012 92140 471566 ...
1 7 37 175 925 4977 27067 147777 808165 ...
1 8 44 212 1156 6428 36338 206942 1183164 ...
1 9 51 249 1387 7879 45663 267367 1575395 ...
1 10 58 286 1618 9330 54994 328058 1973026 ...
1 11 65 323 1849 10781 64325 388749 2371457 ...
1 12 72 360 2080 12232 73656 449440 2770016 ...
-
diff = 3; m0 = diff + 1; mmax = 13;
TransferGf[m_, u_, t_, v_, z_] := Array[u, m].LinearSolve[IdentityMatrix[m] - z*Array[t, {m, m}], Array[v, m]]
RowGf[d_, m_, z_] := 1 + z*Sum[TransferGf[m, Boole[# == k] &, Boole[Abs[#1 - #2] <= d] &, Boole[Abs[# - k] <= d] &, z], {k, 1, m}];
row[m_] := row[m] = CoefficientList[RowGf[diff, m, x] + O[x]^mmax, x];
T[m_ /; m >= m0, n_ /; n >= 0] := row[m][[n + 1]];
Table[T[m - n , n], {m, m0, mmax}, {n, m - m0, 0, -1}] // Flatten (* Jean-François Alcover, Jun 16 2017, adapted from PARI *)
-
TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
RowGf(d,m,z)=1+z*sum(k=1,m,TransferGf(m, i->if(i==k,1,0), (i,j)->abs(i-j)<=d, j->if(abs(j-k)<=d,1,0), z));
for(m=4, 12, print(RowGf(3,m,x)));
for(m=4, 12, v=Vec(RowGf(3,m,x) + O(x^9)); for(n=1, length(v), print1( v[n], ", ") ); print(); );
A124707
Number of base 14 circular n-digit numbers with adjacent digits differing by 1 or less.
Original entry on oeis.org
1, 14, 40, 92, 244, 644, 1750, 4802, 13324, 37244, 104770, 296222, 841114, 2396954, 6851920, 19639652, 56426044, 162453884, 468581890, 1353822062, 3917298334, 11350084334, 32926503100, 95626832432, 278010277474, 809008239794, 2356265478100, 6868253600552
Offset: 0
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (14,-78,208,-209,-198,627,-264,-441,358,100,-120,-5,10)
Except for the first term, row 14 of
A276562.
Showing 1-6 of 6 results.
Comments