A208724 Number of 2n-bead necklaces labeled with numbers 1..5 not allowing reversal, with neighbors differing by exactly 1.
4, 7, 12, 25, 52, 131, 316, 835, 2196, 5935, 16108, 44369, 122644, 341803, 956636, 2690845, 7596484, 21524543, 61171660, 174342217, 498112276, 1426419859, 4093181692, 11767920119, 33891544420, 97764131647, 282429537948, 817028472961, 2366564736724, 6863038218843
Offset: 1
Keywords
Examples
All solutions for n=3: ..4....1....3....2....1....2....3....1....2....3....1....2 ..5....2....4....3....2....3....4....2....3....4....2....3 ..4....1....3....2....3....4....3....3....2....5....1....4 ..5....2....4....3....2....3....4....4....3....4....2....5 ..4....3....3....2....3....4....5....3....4....5....1....4 ..5....2....4....3....2....3....4....2....3....4....2....3
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Column 5 of A208727.
Programs
-
Mathematica
a[n_] := (1/n)*DivisorSum[n, EulerPhi[n/#] * (2*3^# + 2) &] / 2; Array[a, 30] (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
Formula
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A198635(d) / 2. - Andrew Howroyd, Mar 18 2017
Extensions
a(15)-a(30) from Andrew Howroyd, Mar 18 2017