cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112128 Expansion of phi(q^4) / phi(q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -8, 16, -28, 48, -80, 128, -202, 312, -472, 704, -1036, 1504, -2160, 3072, -4324, 6036, -8360, 11488, -15680, 21264, -28656, 38400, -51182, 67864, -89552, 117632, -153836, 200352, -259904, 335872, -432480, 554952, -709728, 904784, -1149916, 1457136
Offset: 0

Views

Author

Michael Somos, Aug 27 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 4*q^2 - 8*q^3 + 16*q^4 - 28*q^5 + 48*q^6 - 80*q^7 + 128*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]^2*(QP[q^8]^5/QP[q^2]^5/QP[q^16]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^4] / EllipticTheta[ 3, 0, q], {q, 0, n}]; (* Michael Somos, Dec 11 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A)^5 / (eta(x^2 + A)^5 * eta(x^16 + A)^2), n))};

Formula

Expansion of (eta(q) / eta(q^16))^2 * (eta(q^8) / eta(q^2))^5 in powers of q.
Euler transform of period 16 sequence [ -2, 3, -2, 3, -2, 3, -2, -2, -2, 3, -2, 3, -2, 3, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - (1 - 2*u + 2*u^2) * (1 - 2*v + 2*v^2).
G.f.: (Sum_{k in Z} x^(4*k^2)) / (Sum_{k in Z} x^(k^2)) = theta_3(0, x^4) / theta_3(0, x).
G.f.: Product_{k>0} ((1 + x^(2*k)) * (1 + x^(4*k)))^3 / ((1 + x^k) * (1 + x^(8*k)))^2.
Expansion of continued fraction 1 / (1 + 2*x / (1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...)))).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 1/2 * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A208724.
(-1)^n * a(n) = A208933(n). a(2*n) = A131126(n). a(2*n + 2) = -2 * A093160(n). - Michael Somos, Dec 11 2016
Convolution inverse of A208274. - Michael Somos, Dec 11 2016
a(n) ~ (-1)^n * exp(sqrt(n)*Pi) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

A208668 Number of 2n-bead necklaces labeled with numbers 1..5 allowing reversal, with neighbors differing by exactly 1.

Original entry on oeis.org

4, 7, 12, 23, 44, 97, 212, 512, 1260, 3251, 8540, 23035, 62780, 173453, 482692, 1353077, 3811364, 10785235, 30625196, 87239999, 249174236, 713416601, 2046945140, 5884580074, 16946835092, 48883925867, 141217957620, 408519816611, 1183291934300, 3431535849813
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=3:
..3....3....1....1....1....2....2....3....1....2....2....4
..4....4....2....2....2....3....3....4....2....3....3....5
..5....3....1....1....3....2....4....3....3....2....4....4
..4....4....2....2....2....3....5....4....4....3....3....5
..5....5....3....1....3....2....4....3....3....4....4....4
..4....4....2....2....2....3....3....4....2....3....3....5
		

Crossrefs

Column 5 of A208671.

Formula

a(n) = (2*A208724(n) + A090993(n))/4. - Andrew Howroyd, Mar 19 2017

Extensions

a(13)-a(30) from Andrew Howroyd, Mar 19 2017
Showing 1-2 of 2 results.