A208759 Triangle of coefficients of polynomials u(n,x) jointly generated with A208760; see the Formula section.
1, 1, 2, 1, 4, 6, 1, 6, 16, 16, 1, 8, 30, 56, 44, 1, 10, 48, 128, 188, 120, 1, 12, 70, 240, 504, 608, 328, 1, 14, 96, 400, 1080, 1872, 1920, 896, 1, 16, 126, 616, 2020, 4512, 6672, 5952, 2448, 1, 18, 160, 896, 3444, 9352, 17856, 23040, 18192, 6688, 1, 20, 198, 1248, 5488, 17472, 40600, 67776, 77616, 54976, 18272
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 4, 6; 1, 6, 16, 16; 1, 8, 30, 56, 44; First five polynomials u(n,x): 1 1 + 2x 1 + 4x + 6x^2 1 + 6x + 16x^2 + 16x^3 1 + 8x + 30x^2 + 56x^3 + 44x^4 From _Philippe Deléham_, Mar 18 2012: (Start) (1, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 4, 6, 0; 1, 6, 16, 16, 0; 1, 8, 30, 56, 44, 0; 1, 10, 48, 128, 188, 120, 0; (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208759 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208760 *) Rest[CoefficientList[CoefficientList[Series[(1-2*y*x-2*y^2*x^2)/(1-x-2*y*x- 2*y^2*x^2), {x,0,20}, {y,0,20}], x], y]//Flatten] (* G. C. Greubel, Mar 28 2018 *)
Formula
u(n,x) = u(n-1,x) + 2*x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + 2*x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 18 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-2y*x-2*y^2*x^2)/(1-x-2*y*x-2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)
Extensions
Terms a(58) onward added by G. C. Greubel, Mar 28 2018
Comments