cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208775 Number of n-bead necklaces labeled with numbers 1..6 not allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

6, 11, 16, 30, 52, 117, 242, 577, 1360, 3347, 8278, 20978, 53346, 137422, 355978, 928731, 2434580, 6414014, 16961468, 45017417, 119840582, 319916277, 856089572, 2295950281, 6169664562, 16608996492, 44785220118, 120942143132, 327053057574, 885545659155, 2400570958904, 6514679288762, 17697582670400, 48122529680805
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=3:
..5....1....1....3....5....5....1....2....2....3....3....6....2....4....4....4
..5....1....2....3....6....5....1....3....2....3....4....6....2....4....5....4
..5....2....2....4....6....6....1....3....2....3....4....6....3....4....5....5
		

Crossrefs

Column 6 of A208777.

Programs

  • Mathematica
    sn[n_, k_] := 1/n*Sum[ Sum[ EulerPhi[j]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/j), {j, Divisors[n]}], {i, 1, k}]; Table[sn[n, 6], {n, 1, 34}] // FullSimplify (* Jean-François Alcover, Oct 31 2017, after Joerg Arndt *)
  • PARI
    /* from the Knopfmacher et al. reference */
    default(realprecision,99); /* using floats */
    sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
    vector(66,n, round(sn(n,6)) )
    /* Joerg Arndt, Aug 09 2012 */

Formula

a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124699(n). - Andrew Howroyd, Mar 18 2017