cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208815 n for which A079277(n) + phi(n) < n.

Original entry on oeis.org

115, 329, 1243, 2119, 2171, 4709, 4777, 4811, 6593, 6631, 6707, 6821, 11707, 11983, 12029, 14597, 15463, 16793, 23809, 23867, 23983, 24041, 24331, 29047, 29171, 29357, 29543, 50357, 50579, 67937, 68183, 68347, 68429, 77873, 78389, 78733, 79421, 83351, 83453, 102413
Offset: 1

Views

Author

Robert Israel, Mar 01 2012

Keywords

Comments

Includes (among other terms, see below) semiprimes pq where p and q are primes with p^k-p+1 < q < p^k for an integer k>1. In particular, by the Prime Number Theorem this sequence is infinite. - clarified by Antti Karttunen, Apr 26 2017
From Antti Karttunen, Apr 26 2017: (Start)
Numbers n for which A051953(n) > A079277(n).
Factorization of terms a(1) .. a(29): 5*23, 7*47, 11*113, 13*163, 13*167, 17*277, 17*281, 17*283, 19*347, 19*349, 19*353, 19*359, 23*509, 23*521, 23*523, 11*1327, 7*47*47, 7*2399, 29*821, 29*823, 29*827, 29*829, 29*839, 31*937, 31*941, 31*947, 31*953, 37*1361, 37*1367. Note that a(17) = 15463 is not a semiprime.
(End)

Examples

			A079277(115) + phi(115) = 25 + 88 = 113 < 115 so 115 is in the sequence, where phi = A000010.
		

Crossrefs

Positions of negative terms in A285709.

Programs

  • Mathematica
    Select[Range[2, 10^4], Function[n, If[n == 2, 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]] + EulerPhi@ n < n]] (* or *)
    Do[If[If[n == 2, 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]] + EulerPhi@ n < n, Print@ n], {n, 2, 10^5}] (* Michael De Vlieger, Apr 27 2017 *)

Extensions

a(28)-a(29) from Antti Karttunen, Apr 26 2017
a(30)-a(40) from David A. Corneth, Apr 26 2017