A208880 Number of words either empty or beginning with the first letter of the cyclic n-ary alphabet, where each letter of the alphabet occurs twice and letters of neighboring word positions are equal or neighbors in the alphabet.
1, 1, 3, 30, 62, 114, 202, 346, 582, 966, 1590, 2602, 4242, 6898, 11198, 18158, 29422, 47650, 77146, 124874, 202102, 327062, 529254, 856410, 1385762, 2242274, 3628142, 5870526, 9498782, 15369426, 24868330, 40237882, 65106342, 105344358, 170450838, 275795338
Offset: 0
Examples
a(0) = 1: the empty word. a(1) = 1 = |{aa}|. a(2) = 3 = |{aabb, abab, abba}|. a(3) = 30 = |{aabbcc, aabcbc, aabccb, aacbbc, aacbcb, aaccbb, ababcc, abacbc, abaccb, abbacc, abbcac, abbcca, abcabc, abcacb, abcbac, abcbca, abccab, abccba, acabbc, acabcb, acacbb, acbabc, acbacb, acbbac, acbbca, acbcab, acbcba, accabb, accbab, accbba}|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Crossrefs
Row n=2 of A208879.
Programs
-
Maple
a:= n-> `if`(n<3, 1+n*(n-1), (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|-1|-2|3>>^n. <<2, 2, 14, 30>>)[1, 1]): seq(a(n), n=0..40);
-
Mathematica
Join[{1,1,3},LinearRecurrence[{3,-2,-1,1},{30,62,114,202},40]] (* Harvey P. Dale, Mar 09 2015 *)
Formula
G.f.: -(11*x^6-10*x^5-22*x^4+24*x^3+2*x^2-2*x+1)/((x^2+x-1)*(x-1)^2).
Comments