A208924 Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of Golay sequences of length L.
4, 8, 32, 192, 128, 1536, 1088, 64, 15360, 9728, 512, 184320, 102912
Offset: 1
Links
- Dragomir Z. Dokovic, Equivalence classes and representatives of Golay sequences, Discrete Math. 189 (1998), no. 1-3, 79-93. MR1637705 (99j:94031).
- Matthew G. Parker, Kenneth G. Paterson, and Chintha Tellambura, Golay Complementary Sequences, in Wiley Encyclopedia of Telecommunications, John G. Proakis, ed., Wiley, 2003; alternate link, January 19, 2004. See Table 1 p. 7.
Extensions
a(11)-a(13) from Vincenzo Librandi, Nov 26 2020
Comments