A185064
Numbers k such that a Golay sequence of length k exists.
Original entry on oeis.org
1, 2, 4, 8, 10, 16, 20, 26, 32, 40, 52, 64, 80, 100
Offset: 1
A208929
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of non-constructable Golay sequences of length L.
Original entry on oeis.org
1, 1, 0, 0, 2, 2, 1, 1, 44, 0
Offset: 1
A208927
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of Golay sequences of length L.
Original entry on oeis.org
1, 1, 1, 5, 2, 36, 25, 1, 336, 220
Offset: 1
A208928
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of constructable Golay sequences of length L.
Original entry on oeis.org
0, 0, 1, 5, 0, 34, 24, 0, 292, 220, 12, 3032, 2088, 128
Offset: 1
A208925
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of constructable Golay sequences of length L.
Original entry on oeis.org
0, 0, 32, 192, 0, 1408, 1024, 0, 12544, 9728, 512, 132608, 94720, 8192
Offset: 1
A208926
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of non-constructable Golay sequences of length L.
Original entry on oeis.org
4, 8, 0, 0, 128, 128, 64, 64, 2816, 0, 0, 51712, 8192
Offset: 1
Showing 1-6 of 6 results.
Comments