A208929
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of non-constructable Golay sequences of length L.
Original entry on oeis.org
1, 1, 0, 0, 2, 2, 1, 1, 44, 0
Offset: 1
A208924
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of Golay sequences of length L.
Original entry on oeis.org
4, 8, 32, 192, 128, 1536, 1088, 64, 15360, 9728, 512, 184320, 102912
Offset: 1
- Dragomir Z. Dokovic, Equivalence classes and representatives of Golay sequences, Discrete Math. 189 (1998), no. 1-3, 79-93. MR1637705 (99j:94031).
- Matthew G. Parker, Kenneth G. Paterson, and Chintha Tellambura, Golay Complementary Sequences, in Wiley Encyclopedia of Telecommunications, John G. Proakis, ed., Wiley, 2003; alternate link, January 19, 2004. See Table 1 p. 7.
A208927
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of Golay sequences of length L.
Original entry on oeis.org
1, 1, 1, 5, 2, 36, 25, 1, 336, 220
Offset: 1
A208928
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of constructable Golay sequences of length L.
Original entry on oeis.org
0, 0, 1, 5, 0, 34, 24, 0, 292, 220, 12, 3032, 2088, 128
Offset: 1
A208925
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of constructable Golay sequences of length L.
Original entry on oeis.org
0, 0, 32, 192, 0, 1408, 1024, 0, 12544, 9728, 512, 132608, 94720, 8192
Offset: 1
A208926
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of non-constructable Golay sequences of length L.
Original entry on oeis.org
4, 8, 0, 0, 128, 128, 64, 64, 2816, 0, 0, 51712, 8192
Offset: 1
A321851
Number of solutions to |dft(a)^2 + dft(b)^2 + dft(d)^2| + |dft(c)^2| = 4n, where a,b,c,d are +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 480, 1600, 4800, 13824
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
- Jeffery Kline, List of tuples (a,b,c,d) to demonstrate that a(n)>0, for 1<=n<=33 and n=35.
Sequence
A258218 concerns the Paley construction.
A319594
Number of solutions to dft(p)^2 + dft(q)^2 = (4n-3), where p and q are even sequences of length 2n-1, p(0)=0, p(k)=+1,-1 when k<>0, q(k) is +1,-1 for all k, and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
2, 4, 4, 12, 12, 0, 12, 16, 0, 36, 24, 0, 20, 36, 0, 60
Offset: 1
For n=1, the a(1)=2 solutions are ((0),(-)) and ((0),(+)). For n=2, the a(2)=4 solutions are ((0,-,-), (-,+,+)), ((0,-,-), (+,-,-)), ((0,+,+),(-,+,+)) and ((0,+,+), (+,-,-)).
- Jeffery Kline, List of all pairs (p,q) that are counted by a(n), for 1<=n<=16.
- Jeffery Kline, List of pairs (p,q) that establish a(n)>0, for n=25, 26, and 29.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
- J. Seberry and N.A. Balonin, The Propus Construction for Symmetric Hadamard Matrices, arXiv:1512.01732 [math.CO], 2015.
- J. Seberry and N.A. Balonin, Two infinite families of symmetric Hadamard matrices, Australasian Journal of Combinatorics, 69 (2015), 349-357.
A321338
Number of solutions to dft(a)^2 + dft(b)^2 + dft(c)^2 + dft(d)^2 = 4n, where a,b,c,d are even +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 64, 256, 192, 1536, 960
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- D. Z. Dokovic, Williamson matrices of order 4n for n= 33, 35, 39, Discrete mathematics (1993) May 15;115(1-3):267-71.
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=7.
A322617
Number of solutions to |dft(a)^2 + dft(d)^2| + |dft(b)^2 + dft(c)^2| = 4n, where a,b,c,d are +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 576, 1664, 4800, 23040
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- W. H. Holzmann, H. Kharaghani and B. Tayfeh-Rezaie, Williamson matrices up to order 59, Des. Codes Cryptogr. 46 (2008), 343-352.
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=5.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
Showing 1-10 of 11 results.
Comments