cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208956 Triangular array read by rows. T(n,k) is the number of n-permutations that have at least k fixed points with n >= 1 and 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 15, 7, 1, 1, 76, 31, 11, 1, 1, 455, 191, 56, 16, 1, 1, 3186, 1331, 407, 92, 22, 1, 1, 25487, 10655, 3235, 771, 141, 29, 1, 1, 229384, 95887, 29143, 6883, 1339, 205, 37, 1, 1, 2293839, 958879, 291394, 68914, 13264, 2176, 286, 46, 1, 1
Offset: 1

Views

Author

Geoffrey Critzer, Mar 03 2012

Keywords

Comments

Row sums = n!

Examples

			Triangle begins:
     1;
     1,    1;
     4,    1,   1;
    15,    7,   1,  1;
    76,   31,  11,  1,  1;
   455,  191,  56, 16,  1, 1;
  3186, 1331, 407, 92, 22, 1, 1;
  ...
		

Crossrefs

Cf. A002467 (column 1), A155521 (column 2).

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1-n, (n-1)*(b(n-1)+b(n-2))) end:
    T:= (n, k)-> add(binomial(n, i)*b(n-i), i=k..n):
    seq(seq(T(n,k), k=1..n), n=1..12);  # Alois P. Heinz, Apr 22 2013
  • Mathematica
    f[list_] := Select[list,#>0&]; Map[f,Transpose[Table[nn=10; d=Exp[-x]/(1-x); p=1/(1-x); s=Sum[x^i/i!,{i,0,n}]; Drop[Range[0,nn]! CoefficientList[Series[p-s d, {x,0,nn}], x], 1], {n,0,9}]]]//Flatten

Formula

E.g.f. for column k: 1/(1-x) - D(x)*Sum_{i=0..k-1} x^i/i! where D(x) is the e.g.f. for A000166.
T(n,k) = Sum_{i=k..n} C(n,i)*A000166(n-i). - Alois P. Heinz, Apr 22 2013