A208956 Triangular array read by rows. T(n,k) is the number of n-permutations that have at least k fixed points with n >= 1 and 1 <= k <= n.
1, 1, 1, 4, 1, 1, 15, 7, 1, 1, 76, 31, 11, 1, 1, 455, 191, 56, 16, 1, 1, 3186, 1331, 407, 92, 22, 1, 1, 25487, 10655, 3235, 771, 141, 29, 1, 1, 229384, 95887, 29143, 6883, 1339, 205, 37, 1, 1, 2293839, 958879, 291394, 68914, 13264, 2176, 286, 46, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 4, 1, 1; 15, 7, 1, 1; 76, 31, 11, 1, 1; 455, 191, 56, 16, 1, 1; 3186, 1331, 407, 92, 22, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
b:= proc(n) b(n):= `if`(n<2, 1-n, (n-1)*(b(n-1)+b(n-2))) end: T:= (n, k)-> add(binomial(n, i)*b(n-i), i=k..n): seq(seq(T(n,k), k=1..n), n=1..12); # Alois P. Heinz, Apr 22 2013
-
Mathematica
f[list_] := Select[list,#>0&]; Map[f,Transpose[Table[nn=10; d=Exp[-x]/(1-x); p=1/(1-x); s=Sum[x^i/i!,{i,0,n}]; Drop[Range[0,nn]! CoefficientList[Series[p-s d, {x,0,nn}], x], 1], {n,0,9}]]]//Flatten
Formula
E.g.f. for column k: 1/(1-x) - D(x)*Sum_{i=0..k-1} x^i/i! where D(x) is the e.g.f. for A000166.
T(n,k) = Sum_{i=k..n} C(n,i)*A000166(n-i). - Alois P. Heinz, Apr 22 2013
Comments