A208981 Number of iterations required to reach a power of 2 in the 3x+1 sequence starting at n.
0, 0, 3, 0, 1, 4, 12, 0, 15, 2, 10, 5, 5, 13, 13, 0, 8, 16, 16, 3, 1, 11, 11, 6, 19, 6, 107, 14, 14, 14, 102, 0, 22, 9, 9, 17, 17, 17, 30, 4, 105, 2, 25, 12, 12, 12, 100, 7, 20, 20, 20, 7, 7, 108, 108, 15, 28, 15, 28, 15, 15, 103, 103, 0, 23, 23, 23, 10, 10, 10
Offset: 1
Examples
a(7) = 12 because the Collatz trajectory for 7 is 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ... which reached 16 = 2^4 in 12 steps.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- John Smith, Collatz sequence, PlanetMath.
- Eric Weisstein's World of Mathematics, Collatz problem.
- Index entries for sequences related to 3x+1 (or Collatz) problem
Crossrefs
Programs
-
Haskell
a208981 = length . takeWhile ((== 0) . a209229) . a070165_row -- Reinhard Zumkeller, Jan 02 2013
-
Maple
a:= proc(n) option remember; `if`(n=2^ilog2(n), 0, 1+a(`if`(n::odd, 3*n+1, n/2))) end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 05 2021
-
Mathematica
Collatz[n_?OddQ] := 3*n + 1; Collatz[n_?EvenQ] := n/2; Table[-1 + Length[NestWhileList[Collatz, n, Not[IntegerQ[Log[2, #]]] &]], {n, 50}] (* Alonso del Arte, Mar 04 2012 *)
-
PARI
ispow2(n)=n>>=valuation(n,2); n==1 a(n)=my(s); while(!ispow2(n), n=if(n%2, 3*n+1, n/2); s++); s \\ Charles R Greathouse IV, Jul 31 2016
Formula
For x>0 an integer, define f_0(x)=x, and for r=1,2,..., f_r(x)=f_{r-1}(x)/2 if f_{r-1}(x) is even, else f_r(x)=3*f_{r-1}(x)+1. Then a(n) = min(k such that f_k(n) is equal to a power of 2).
a(n) = A006577(n) - A135282(n) (after Alonso del Arte's comment), if A006577(n) is not -1. - Omar E. Pol, Apr 10 2022
Extensions
Name clarified by Omar E. Pol, Apr 10 2022
Comments