A209061 Exponentially squarefree numbers.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Xiaodong Cao and Wenguang Zhai, Some arithmetic functions involving exponential divisors, JIS 13 (2010), Article 10.3.7.
- Y.-F. S. Petermann, Arithmetical functions involving exponential divisors: note on two papers by L. Toth, Ann. Univ. Sci. Budapest, Sect. Comp. 32 (2010) 143-149.
- Vladimir Shevelev, Compact integers and factorials, Acta Arithmetica 126:3 (2007), pp. 195-236.
- Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
- Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv:1511.03860 [math.NT], 2015.
- Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
- Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175(2016), 385-395.
- H. M. Stark, On the asymptotic density of the k-free integers, Proc. Amer. Soc. 17 (1966), 1211-1214.
- M. V. Subbarao, On some arithmetic convolutions, in: A. A. Gioia and D. L. Goldsmith (eds.), The Theory of Arithmetic Functions: Proceedings of the Conference at Western Michigan University, April 29 - May 1, 1971, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 247-271; alternative link.
- László Tóth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166 and arXiv:0708.3557 [math.NT], 2007-2009.
Crossrefs
Programs
-
Haskell
a209061 n = a209061_list !! (n-1) a209061_list = filter (all (== 1) . map (a008966 . fromIntegral) . a124010_row) [1..]
-
Mathematica
Select[Range@ 69, Times @@ Boole@ Map[SquareFreeQ, Last /@ FactorInteger@ #] > 0 &] (* Michael De Vlieger, Sep 07 2015 *)
-
PARI
is(n)=my(f=factor(n)[,2]); for(i=1,#f,if(!issquarefree(f[i]), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015
Formula
A166234(a(n)) <> 0.
One can prove that the principal term of Toth's asymptotics for the density of this sequence (cf. Toth's link, Theorem 3) equals also Product_{prime p}(Sum_{j in S}(p-1)/p^{j+1})*x, where S is the set of 0 and squarefree numbers. The remainder term O(x^(0.2+t)), where t>0 is arbitrarily small, was obtained by L. Toth while assuming the Riemann Hypothesis. - Vladimir Shevelev, Sep 12 2015
Comments