cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209149 Triangle of coefficients of polynomials v(n,x) jointly generated with A209146; see the Formula section.

Original entry on oeis.org

1, 3, 1, 6, 5, 1, 12, 16, 7, 1, 24, 44, 30, 9, 1, 48, 112, 104, 48, 11, 1, 96, 272, 320, 200, 70, 13, 1, 192, 640, 912, 720, 340, 96, 15, 1, 384, 1472, 2464, 2352, 1400, 532, 126, 17, 1, 768, 3328, 6400, 7168, 5152, 2464, 784, 160, 19, 1, 1536, 7424
Offset: 1

Views

Author

Clark Kimberling, Mar 07 2012

Keywords

Comments

Alternating row sums: 1,2,2,2,2,2,2,2,2,2,2,2,2,...
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0 <= k <= n, it is (3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 08 2012
A skew triangle of A209144. - Philippe Deléham, Mar 08 2012
Riordan array ( (1 + x)/(1 - 2*x), x/(1 - 2*x) ). Cf. A118800. Matrix inverse is a signed version of A112626. - Peter Bala, Jul 17 2013

Examples

			First five rows:
   1;
   3,  1;
   6,  5,  1;
  12, 16,  7, 1;
  24, 44, 30, 9, 1;
First three polynomials v(n,x): 1, 3 + x, 6 + 5x + x^2.
v(1,x) = 1
v(2,x) = 3 + x
v(3,x) = (3 + x)*(2 + x)
v(4,x) = (3 + x)*(2 + x)^2
v(5,x) = (3 + x)*(2 + x)^3
v(n,x) = (3 + x)*(2 + x)^(n-2)for n > 1. - _Philippe Deléham_, Mar 08 2012
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209148 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209149 *)

Formula

u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 08 2012
As DELTA-triangle: G.f. is (1+x)/(1-2*x-yx). - Philippe Deléham, Mar 08 2012