A209247 a(n) = p(p(n)) + p(p( abs(n - p(p(n-1))) )), where p(n) = A188163(n) + 1 - [n=1].
1, 23, 33, 40, 61, 62, 65, 80, 115, 116, 117, 120, 125, 128, 141, 199, 228, 229, 230, 231, 234, 237, 238, 241, 246, 249, 264, 286, 289, 304, 370, 403, 449, 450, 451, 452, 453, 456, 459, 460, 461, 464, 469, 470, 473, 483, 486, 496, 518, 519, 522, 527, 530, 543
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..10000
Programs
-
Magma
nmax:=200; h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n - Self(n-1)): n in [1..10*nmax]]; // h = A004001 A188163:= function(n) for j in [1..8*nmax+1] do if h[j] eq n then return j; end if; end for; end function; // define a sequence based on A188163 p:= func< n | A188163(n) + 1 - 0^(n-1) >; A209247:= function(n) if n le 2 then return 1; else return p(p(n)) + p(p(Abs(n - p(p(n-1))))); end if; end function; [A209247(n): n in [2..nmax]]; // G. C. Greubel, May 20 2024
-
Mathematica
nmax := 200; h[n_]:= h[n]= If[n<3, 1, h[h[n-1]] + h[n-h[n-1]]]; (* A004001 *) A188163[n_]:= For[m=1, True, m++, If[h[m]==n, Return[m]]]; (* define a sequence from A188163 *) p[n_]:= A188163[n] + 1 - Boole[n==1]; a[n_]:= a[n]= If[n<3, 1, p[p[n]] + p[p[Abs[n-p[p[n-1]]]]]]; Table[a[n], {n, 2, nmax}]
-
SageMath
@CachedFunction def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1)) # h=A004001 def A188163(n): for j in range(1,2*n+1): if h(j)==n: return j # define a function based on A188163 def p(n): return A188163(n) + 1 - int(n==1) @CachedFunction def A209247(n): return 1 if (n<3) else p(p(n)) + p(p(abs(n - p(p(n-1))))) [A209247(n) for n in range(2,201)] # G. C. Greubel, May 20 2024
Extensions
Edited by G. C. Greubel, Apr 23 2024