A209257 A musically inspired Titius-Bode-like sequence based on the geometric division of 4- and 5-dimensional space: Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*A059620(n+6)) + 4.
4, 7, 10, 16, 28, 52, 97, 193, 301, 493, 1150, 1162, 3076, 2386, 3283, 10423, 5827, 20659, 9646, 37852, 15112, 18592, 83692, 27331, 133660, 38857, 45832, 251050, 62566, 367318, 83527, 523315, 109375, 124351, 852826, 158872, 1152508, 200140, 223561, 1754809
Offset: 0
Examples
Z_1 = 3*((1 - 1 + 1 - 1 + 1) + (-1 * 1)) + 4 = 4, Z_2 = 3*((1 + 0 + 0 + 0 + 0) + (0 * 0)) + 4 = 7, Z_3 = 3*((1 + 1 + 0 + 0 + 0) + (0 * 0)) + 4 = 10, Z_4 = 3*((1 + 2 + 1 + 0 + 0) + (0 * 1)) + 4 = 16, Z_5 = 3*((1 + 3 + 3 + 1 + 0) + (0 * 0)) + 4 = 28, Z_6 = 3*((1 + 4 + 6 + 4 + 1) + (0 * 1)) + 4 = 52, Z_7 = 3*((1 + 5 + 10 + 10 + 5) + (1 * 0)) + 4 = 97, Z_8 = 3*((1 + 6 + 15 + 20 + 15) + (6 * 1)) + 4 = 193, Z_9 = 3*((1 + 7 + 21 + 35 + 35) + (21 * 0)) + 4 = 301.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. Baez, This Week's Finds in Mathematical Physics (Week 234)
- H. Chang, Titius-Bode’s Relation and Distribution of Exoplanets
- D. M. F. Chapman, The Titius-Bode Rule, Part 2: Science or Numerology?
- Chemteam, The Balmer Formula
- A. L. Kholodenko, Role of general relativity and quantum mechanics in dynamics of Solar System
- Wikipedia, Dwarf planet
- Wikipedia, Planet
- Wikipedia, Titius-Bode law
Programs
-
Magma
[3*(Binomial(n-1,0) + Binomial(n-1,1) + Binomial(n-1,2) + Binomial(n-1,3) + Binomial(n-1,4) + Binomial(n-1,5)*(Floor((5*(n+6) + 7)/12) - Floor((5*(n+6)+2)/12))) + 4: n in [0..30]]; // G. C. Greubel, Jan 07 2018
-
Mathematica
Z[n_]:= 3*(Binomial[n - 1, 0] + Binomial[n - 1, 1] + Binomial[n - 1, 2] + Binomial[n - 1, 3] + Binomial[n - 1, 4] + Binomial[n - 1, 5]*(Floor[(5 (n + 6) + 7)/12] - Floor[(5 (n + 6) + 2)/12])) + 4; Table[Z[n], {n, 0, 50}] (* G. C. Greubel, Jan 07 2018 *)
-
PARI
{z(n) = 3*(binomial(n-1,0) + binomial(n-1,1) + binomial(n-1,2) + binomial(n-1,3) + binomial(n-1,4) + binomial(n-1,5)*(floor((5*(n+6) + 7)/12) - floor((5*(n+6)+2)/12))) + 4}; for(n=0,30, print1(z(n), ", ")) \\ G. C. Greubel, Jan 07 2018
Formula
Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*(floor((5*(n+6)+7)/12) - floor((5*(n+6)+2)/12))) + 4.
Extensions
a(18) corrected by G. C. Greubel, Jan 07 2018
Comments