A209290 Number of elements whose preimage is the empty set summed over all functions f:{1,2,...,n}->{1,2,...,n}.
0, 0, 2, 24, 324, 5120, 93750, 1959552, 46118408, 1207959552, 34867844010, 1100000000000, 37661140520652, 1390911669927936, 55123269399790046, 2333521433367183360, 105094533691406250000, 5017514388048998039552, 253135520137219049838162, 13456471561751415850795008
Offset: 0
Examples
From _Joerg Arndt_, Jun 10 2013: (Start) There are a(4-1)=a(3)=24 length-4 words of 3 letters (0,1,2) where adjacent letters are distinct: 01: [ 0 1 0 1 ] 02: [ 0 1 0 2 ] 03: [ 0 1 2 0 ] 04: [ 0 1 2 1 ] 05: [ 0 2 0 1 ] 06: [ 0 2 0 2 ] 07: [ 0 2 1 0 ] 08: [ 0 2 1 2 ] 09: [ 1 0 1 0 ] 10: [ 1 0 1 2 ] 11: [ 1 0 2 0 ] 12: [ 1 0 2 1 ] 13: [ 1 2 0 1 ] 14: [ 1 2 0 2 ] 15: [ 1 2 1 0 ] 16: [ 1 2 1 2 ] 17: [ 2 0 1 0 ] 18: [ 2 0 1 2 ] 19: [ 2 0 2 0 ] 20: [ 2 0 2 1 ] 21: [ 2 1 0 1 ] 22: [ 2 1 0 2 ] 23: [ 2 1 2 0 ] 24: [ 2 1 2 1 ] (End)
Crossrefs
Cf. A219859.
Programs
-
Mathematica
Table[n (n-1)^n,{n,0,20}]
-
PARI
a(n) = n*(n-1)^n; \\ Michel Marcus, Aug 22 2017
Formula
a(n) = n*(n - 1)^n.
Comments