cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209322 Number of derangements of [n] with no succession.

Original entry on oeis.org

1, 0, 1, 0, 4, 14, 102, 682, 5484, 49288, 492812, 5418154, 64993966, 844658714, 11822116868, 177292309424, 2836140479376, 48206588630826, 867597809813018, 16482372327022854, 329612875955466784, 6921235129197714036, 152254880756288024536, 3501612401180417830334, 84033374067657870984810, 2100715696249652623708150
Offset: 0

Views

Author

Jon Perry, Jan 19 2013

Keywords

Comments

A derangement is a permutation with no fixed points. A succession of a permutation p is a position i such that p(i+1)-p(i) = 1.

Examples

			For n=4 we have 2143, 2413, 3142 and 4321, so a(4) = 4.
		

Crossrefs

Programs

  • Maple
    F:= proc(S) add(G(S minus {s}, s-1), s = S minus {nops(S)}) end proc:
    G:= proc(S,t) option remember;
    if S = {} then return 1 fi;
    add(procname(S minus {s},s-1), s = S minus {t, nops(S)})
    end proc:
    1,seq(F({$1..n}), n=1..19); # Robert Israel, Mar 02 2017
  • Mathematica
    F[{}] = 1; F[S_] := Sum[G[S ~Complement~ {s}, s-1], {s, S ~Complement~ {Length[S]}}];
    G[{}, ] = 1; G[S, t_] := G[S, t] = Sum[G[S ~Complement~ {s}, s-1], {s, S ~Complement~ {t, Length[S]}}];
    Table[a[n] = F[Range[n]]; Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 05 2019, after Robert Israel *)
  • PARI
    { a209322(n) = if(n==0, return(1)); my(A=matrix(n, n, i, j, i-j!=1 && i!=j)); parsum(s=1, 2^n-1, my(M=vecextract(A, s, s), d=matsize(M)[1], v=vectorv(d, i, 1), pos=bitand(s, 1)); if(pos, v[1]=0); for(k=1, n-1, v=M*v; if(bitand(s>>k, 1), v[pos++]=0)); (-1)^(n-d)*vecsum(v) ); } \\ Max Alekseyev, Apr 03 2025

Formula

a(n) = n! - A207819(n).

Extensions

a(11)-a(14) from Alois P. Heinz, Jan 19 2013
a(15)-a(20) from Robert Israel, Mar 02 2017
a(21)-a(23) from Alois P. Heinz, Jul 04 2021
Terms a(24) onward from Max Alekseyev, Apr 03 2025