A209398 Number of subsets of {1,...,n} containing two elements whose difference is 2.
0, 0, 0, 2, 7, 17, 39, 88, 192, 408, 855, 1775, 3655, 7478, 15228, 30898, 62511, 126177, 254223, 511472, 1027840, 2063600, 4140015, 8300767, 16635087, 33324462, 66736764, 133615658, 267461287, 535294673, 1071191415, 2143357000, 4288290240, 8579130888
Offset: 0
Examples
For n=3 the subsets containing 1 and 3 are {1,3} and {1,2,3} so a(3)=2.
Links
- David Nacin, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1,-1,-2).
Programs
-
Magma
[2^n - Fibonacci(Floor(n/2) + 2)*Fibonacci(Floor((n + 1)/2) + 2): n in [0..30]]; // G. C. Greubel, Jan 03 2018
-
Mathematica
Table[2^n -Fibonacci[Floor[n/2] + 2]*Fibonacci[Floor[(n + 1)/2] + 2], {n, 0,30}] LinearRecurrence[{3, -2, 1, -1, -2}, {0, 0, 0, 2, 7}, 40] CoefficientList[ Series[x^3 (x +2)/(2x^5 +x^4 -x^3 +2x^2 -3x +1), {x, 0, 33}], x] (* Robert G. Wilson v, Jan 03 2018 *) a[n_] := Floor[ N[(2^-n ((50 - 14 Sqrt[5]) (1 - Sqrt[5])^n + ((-1 + 2I) (-2I)^n - (1 + 2I) (2I)^n + 5 4^n) (15 + 11 Sqrt[5]) - 2 (1 + Sqrt[5])^n (85 + 37 Sqrt[5])))/(150 + 110 Sqrt[5])]]; Array[a, 33] (* Robert G. Wilson v, Jan 03 2018 *)
-
PARI
x='x+O('x^30); concat([0,0,0], Vec(x^3*(2+x)/((1-2*x)*(1+x^2)*(1-x-x^2)))) \\ G. C. Greubel, Jan 03 2018
-
Python
#Through Recurrence def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:7}): if n in adict: return adict[n] adict[n]=3*a(n-1)-2*a(n-2)+a(n-3)-a(n-4)-2*a(n-5) return adict[n]
-
Python
#Returns the actual list of valid subsets def contains101(n): patterns=list() for start in range (1,n-1): s=set() for i in range(3): if (1,0,1)[i]: s.add(start+i) patterns.append(s) s=list() for i in range(2,n+1): for temptuple in comb(range(1,n+1),i): tempset=set(temptuple) for sub in patterns: if sub <= tempset: s.append(tempset) break return s #Counts all such subsets using the preceding function def countcontains101(n): return len(contains101(n))
Formula
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=2, a(4)=7.
a(n) = 2^n - F(2+floor(n/2))*F(floor(2+(n+1)/2)), where F(n) are the Fibonacci numbers.
a(n) = 2^n - A006498(n+2).
G.f.: (2*x^3 + 1*x^4)/(1 - 3*x + 2*x^2 - x^3 + x^4 + 2*x^5) = x^3*(2 + x) / ((1 - 2*x)*(1 + x^2)*(1 - x - x^2)).
E.g.f.: (2*cos(x) + 5*cosh(2*x) + sin(x) + 5*sinh(2*x) - exp(x/2)*(7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Mar 12 2024
Comments