A209413 Triangle of coefficients of polynomials v(n,x) jointly generated with A209172; see the Formula section.
1, 1, 2, 1, 3, 4, 1, 5, 7, 8, 1, 6, 17, 15, 16, 1, 8, 23, 49, 31, 32, 1, 9, 39, 72, 129, 63, 64, 1, 11, 48, 150, 201, 321, 127, 128, 1, 12, 70, 198, 501, 522, 769, 255, 256, 1, 14, 82, 338, 699, 1524, 1291, 1793, 511, 512, 1, 15, 110, 420, 1375, 2223, 4339, 3084, 4097, 1023, 1024
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 3, 4; 1, 5, 7, 8; 1, 6, 17, 15, 16; First three polynomials v(n,x): 1 1 + 2x 1 + 3x + 4x^2. From _Philippe Deléham_, Mar 11 2012: (Start) (1, 0, -1/2, -1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 1, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 3, 4, 0; 1, 5, 7, 8, 0; 1, 6, 17, 15, 16, 0; 1, 8, 23, 49, 31, 32, 0; 1, 9, 39, 72, 129, 63, 64, 0; 1, 11, 48, 150, 201, 321, 127, 128, 0; (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209172 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209413 *) CoefficientList[CoefficientList[Series[(1 + x - 3*y*x - y*x^2 + 2*y^2*x^2)/(1 - 3*y*x - (1 - 2 y^2)*x^2), {x,0,10}, {y,0,10}], x],y] // Flatten (* G. C. Greubel, Jan 03 2018 *)
Formula
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 11 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(2,0) = 1, T(2,1) = 2, T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+x-3*y*x-y*x^2+2*y^2*x^2)/(1-3*y*x-(1-2y^2)*x^2). (End)
Comments