cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209421 Triangle of coefficients of polynomials u(n,x) jointly generated with A209422; see the Formula section.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 9, 7, 5, 1, 1, 15, 15, 9, 6, 1, 1, 25, 28, 22, 11, 7, 1, 1, 41, 53, 44, 30, 13, 8, 1, 1, 67, 97, 91, 63, 39, 15, 9, 1, 1, 109, 176, 179, 140, 85, 49, 17, 10, 1, 1, 177, 315, 349, 291, 201, 110, 60, 19, 11, 1, 1, 287, 559, 667, 601, 437, 275, 138, 72, 21, 12, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
  1
  1 1
  3 1 1
  5 4 1 1
  9 7 5 1 1
First three polynomials v(n,x): 1, 1 + x, 3 + x + x^2.
		

Crossrefs

Cf. A001595 (column 1), A209422, A208510, A212804.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209421 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209422 *)
    CoefficientList[CoefficientList[Series[(1 - t + t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)), {t, 0, 10}], t], x] // Flatten (* G. C. Greubel, Jan 03 2018 *)

Formula

u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + v(n-1,x) +1,
where u(1,x) = 1, v(1,x) = 1.
Riordan array (f(z), z*g(z)) where f(z) = (1 - z + z^2)/(1 - 2*z + z^3) is the o.g.f. for A001595 and g(z) = (1 - z)/(1 - z - z^2) is the o.g.f. for A212804, a variant of the Fibonacci numbers. - Peter Bala, Dec 30 2015
G.f.: (1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)) = 1 + (1+x)*t + (3+x+x^2)*t^2 + ... . - G. C. Greubel, Jan 03 2018