cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209423 Difference between the number of odd parts and the number of even parts in all the partitions of n.

Original entry on oeis.org

1, 1, 4, 4, 10, 13, 24, 30, 52, 68, 105, 137, 202, 264, 376, 485, 669, 864, 1162, 1486, 1968, 2501, 3256, 4110, 5285, 6630, 8434, 10511, 13241, 16417, 20505, 25273, 31344, 38438, 47346, 57782, 70746, 85947, 104663, 126594, 153386, 184793, 222865, 267452
Offset: 1

Views

Author

Clark Kimberling, Mar 08 2012

Keywords

Comments

a(n) = number of parts of odd multiplicity (each counted only once) in all partitions of n. Example: a(5) = 10 because we have [5'],[4',1'],[3',2'], [3',1,1],[2,2,1'],[2',1',1,1], and [1',1,1,1,1] (the 10 counted parts are marked). - Emeric Deutsch, Feb 08 2016

Examples

			The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1], a total of 15 odd parts and 5 even parts, so that a(5)=10.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local m, f, g;
          m:= irem(i, 2);
          if n=0 then [1, 0, 0]
        elif i<1 then [0, 0, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0$3], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+m*g[1], f[3]+g[3]+(1-m)*g[1]]
          fi
        end:
    a:= n-> b(n, n)[2] -b(n, n)[3]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012
    g := add(x^j/(1+x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 08 2016
  • Mathematica
    f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
    o[n_] := Sum[f[n, i], {i, 1, n, 2}]
    e[n_] := Sum[f[n, i], {i, 2, n, 2}]
    Table[o[n], {n, 1, 45}]  (* A066897 *)
    Table[e[n], {n, 1, 45}]  (* A066898 *)
    %% - %                   (* A209423 *)
    b[n_, i_] := b[n, i] = Module[{m, f, g}, m = Mod[i, 2]; If[n==0, {1, 0, 0}, If[i<1, {0, 0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + m*g[[1]], f[[3]] + g[[3]] + (1-m)* g[[1]]}]]]; a[n_] := b[n, n][[2]] - b[n, n][[3]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)

Formula

a(n) = A066897(n) - A066898(n) = A206563(n,1) - A206563(n,2). - Omar E. Pol, Mar 08 2012
G.f.: Sum_{j>0} x^j/(1+x^j)/Product_{k>0}(1 - x^k). - Emeric Deutsch, Feb 08 2016
a(n) = Sum_{i=1..n} (-1)^(i + 1)*A181187(n, i). - John M. Campbell, Mar 18 2018
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2) * Pi * sqrt(n)). - Vaclav Kotesovec, May 25 2018
For n > 0, a(n) = A305121(n) + A305123(n). - Vaclav Kotesovec, May 26 2018
a(n) = Sum_{k=-floor(n/2)+(n mod 2)..n} k * A240009(n,k). - Alois P. Heinz, Oct 23 2018
a(n) = Sum_{k>0} k * A264398(n,k). - Alois P. Heinz, Aug 05 2020