A006128
Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.
Original entry on oeis.org
0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Paul Erdős and Joseph Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J. 8, (1941), 335-345.
- John A. Ewell, Additive evaluation of the divisor function, Fibonacci Quart. 45 (2007), no. 1, 22-25. See Table 1.
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008; see p.27
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Arnold Knopfmacher and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- C. L. Mallows & N. J. A. Sloane, Emails, Jun. 1991
- Ljuben Mutafchiev, On the Largest Part Size and Its Multiplicity of a Random Integer Partition, arXiv:1712.03233 [math.PR], 2017.
- Omar E. Pol, Illustration of initial terms
- J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, p. 495.
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
- H. S. Wilf, A unified setting for selection algorithms (II), Annals Discrete Math., 2 (1978), 135-148.
The version for normal multisets is
A001787.
The version for factorizations is
A066637.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.
-
List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
-
a006128 = length . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
a:= n-> coeff(series(g,x,62),x,n):
seq(a(n), n=0..61);
# second Maple program:
a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
seq(a(n), n=0..61); # Alois P. Heinz, Aug 23 2019
-
a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
-
f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
-
a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
-
from sympy import divisor_count, npartitions
def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
A066897
Total number of odd parts in all partitions of n.
Original entry on oeis.org
1, 2, 5, 8, 15, 24, 39, 58, 90, 130, 190, 268, 379, 522, 722, 974, 1317, 1754, 2330, 3058, 4010, 5200, 6731, 8642, 11068, 14076, 17864, 22528, 28347, 35490, 44320, 55100, 68355, 84450, 104111, 127898, 156779, 191574, 233625, 284070, 344745, 417292, 504151
Offset: 1
a(4) = 8 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], we have a total of 0+2+0+2+4=8 odd parts.
Cf.
A000041,
A001227,
A001620,
A002865,
A006128,
A060831,
A066898,
A066966,
A066967,
A103919,
A206563,
A207381,
A207382,
A209423,
A338156.
-
a066897 = p 0 1 where
p o _ 0 = o
p o k m | m < k = 0
| otherwise = p (o + mod k 2) k (m - k) + p o (k + 1) m
-- Reinhard Zumkeller, Mar 09 2012
-
a066897 = length . filter odd . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:=sum(x^(2*j-1)/(1-x^(2*j-1)),j=1..70)/product(1-x^j,j=1..70): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..44);
# Emeric Deutsch, Mar 13 2006
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50);
# Alois P. Heinz, Mar 22 2012
-
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
o[n_] := Sum[f[n, i], {i, 1, n, 2}]
e[n_] := Sum[f[n, i], {i, 2, n, 2}]
Table[o[n], {n, 1, 45}] (* A066897 *)
Table[e[n], {n, 1, 45}] (* A066898 *)
%% - % (* A209423 *)
(* Clark Kimberling, Mar 08 2012 *)
b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 26 2015, after Alois P. Heinz *)
A240009
Number T(n,k) of partitions of n, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, -floor(n/2)+(n mod 2)<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 3, 2, 2, 2, 1, 1, 0, 1, 1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1, 1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1, 1, 2, 4, 7, 7, 6, 8, 6, 4, 4, 2, 2, 1, 1, 0, 1
Offset: 0
T(5,-1) = 1: [2,2,1].
T(5,0) = 2: [4,1], [3,2].
T(5,1) = 1: [5].
T(5,2) = 1: [2,1,1,1].
T(5,3) = 1: [3,1,1].
T(5,5) = 1: [1,1,1,1,1].
Triangle T(n,k) begins:
: n\k : -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 ...
+-----+----------------------------------------------------
: 0 : 1;
: 1 : 1;
: 2 : 1, 0, 0, 1;
: 3 : 1, 1, 0, 1;
: 4 : 1, 1, 0, 1, 1, 0, 1;
: 5 : 1, 2, 1, 1, 1, 0, 1;
: 6 : 1, 1, 1, 1, 2, 2, 1, 1, 0, 1;
: 7 : 1, 2, 3, 2, 2, 2, 1, 1, 0, 1;
: 8 : 1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1;
: 9 : 1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1;
: 10 : 1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1;
Columns k=(-1)-10 give:
A239832,
A045931,
A240010,
A240011,
A240012,
A240013,
A240014,
A240015,
A240016,
A240017,
A240018,
A240019.
Row lengths give
A016777(floor(n/2)).
Cf.
A240021 (the same for partitions into distinct parts),
A242618 (the same for parts counted without multiplicity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i)*x^(2*irem(i, 2)-1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
seq(T(n), n=0..14);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]*x^(2*Mod[i, 2]-1)]]]; T[n_] := (degree = Exponent[b[n, n], x]; ldegree = -Exponent[b[n, n] /. x -> 1/x, x]; Table[Coefficient[b[n, n], x, i], {i, ldegree, degree}]); Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
-
N=20; q='q+O('q^N);
e(n) = if(n%2!=0, u, 1/u);
gf = 1 / prod(n=1,N, 1 - e(n)*q^n );
V = Vec( gf );
{ for (j=1, #V, \\ print triangle, including leading zeros
for (i=0, N-j, print1(" ")); \\ padding
for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
print();
); }
/* Joerg Arndt, Mar 31 2014 */
A066898
Total number of even parts in all partitions of n.
Original entry on oeis.org
0, 1, 1, 4, 5, 11, 15, 28, 38, 62, 85, 131, 177, 258, 346, 489, 648, 890, 1168, 1572, 2042, 2699, 3475, 4532, 5783, 7446, 9430, 12017, 15106, 19073, 23815, 29827, 37011, 46012, 56765, 70116, 86033, 105627, 128962, 157476, 191359, 232499, 281286, 340180, 409871
Offset: 1
a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
-
a066898 = p 0 1 where
p e _ 0 = e
p e k m | m < k = 0
| otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m
-- Reinhard Zumkeller, Mar 09 2012
-
a066898 = length . filter even . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # Emeric Deutsch, Feb 17 2006
A066898 := proc(n)
add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ;
end proc: # R. J. Mathar, Jun 18 2016
-
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
o[n_] := Sum[f[n, i], {i, 1, n, 2}]
e[n_] := Sum[f[n, i], {i, 2, n, 2}]
Table[o[n], {n, 1, 45}] (* A066897 *)
Table[e[n], {n, 1, 45}] (* A066898 *)
%% - % (* A209423 *)
(* Clark Kimberling, Mar 08 2012 *)
a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 31 2016, after Vladeta Jovovic *)
A305102
G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k)/(1-x^k).
Original entry on oeis.org
0, 1, 4, 10, 23, 46, 88, 158, 274, 459, 748, 1190, 1858, 2846, 4292, 6384, 9373, 13602, 19536, 27782, 39158, 54740, 75928, 104562, 143036, 194423, 262704, 352988, 471778, 627382, 830352, 1093994, 1435132, 1874920, 2439832, 3163020, 4085825, 5259602, 6748136
Offset: 0
-
nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020
A305082
G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k).
Original entry on oeis.org
0, 1, 3, 5, 9, 13, 20, 28, 39, 54, 71, 94, 124, 159, 201, 258, 322, 401, 499, 613, 750, 918, 1110, 1340, 1617, 1935, 2308, 2752, 3261, 3854, 4554, 5350, 6273, 7348, 8572, 9983, 11612, 13460, 15578, 18007, 20761, 23894, 27473, 31511, 36090, 41296, 47152, 53767
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[((Log[1-x] + QPolyGamma[0, 1, x]) * QPochhammer[-1, x]) / (2*Log[x]), {x, 0, nmax}], x]
A305123
G.f.: Sum_{k>=1} x^(2*k-1)/(1+x^(2*k-1)) * Product_{k>=1} 1/(1-x^k).
Original entry on oeis.org
0, 1, 0, 3, 2, 7, 6, 15, 16, 32, 36, 62, 74, 117, 142, 214, 264, 377, 468, 648, 806, 1090, 1354, 1791, 2224, 2894, 3580, 4598, 5670, 7193, 8838, 11102, 13588, 16925, 20632, 25501, 30972, 38021, 46000, 56135, 67668, 82119, 98642, 119115, 142592, 171412, 204520
Offset: 0
-
nmax = 60; CoefficientList[Series[Sum[x^(2*k-1)/(1+x^(2*k-1)), {k, 1, nmax}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A305121
G.f.: Sum_{k>=1} x^(2*k)/(1+x^(2*k)) * Product_{k>=1} 1/(1-x^k).
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 7, 9, 14, 20, 32, 43, 63, 85, 122, 162, 221, 292, 396, 514, 680, 878, 1147, 1465, 1886, 2391, 3050, 3836, 4841, 6048, 7579, 9403, 11685, 14419, 17806, 21845, 26810, 32725, 39947, 48528, 58926, 71267, 86151, 103750, 124860, 149791, 179551
Offset: 0
-
nmax = 60; CoefficientList[Series[Sum[x^(2*k)/(1+x^(2*k)), {k, 1, nmax}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A264398
Triangle read by rows: T(n,k) is the number of partitions of n having k parts with odd multiplicities.
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 2, 1, 2, 2, 1, 0, 4, 3, 3, 4, 3, 1, 0, 7, 7, 1, 5, 7, 7, 3, 0, 12, 14, 4, 7, 12, 14, 8, 1, 0, 19, 26, 10, 1, 11, 19, 26, 18, 3, 0, 30, 45, 22, 4, 15, 30, 45, 36, 9, 0, 45, 75, 44, 11, 1, 22, 45, 75, 67, 21, 1, 0, 67, 120, 81, 26, 3, 30, 67, 120, 119, 45, 4
Offset: 0
T(6,1) = 4 because we have [6*], [4*,1,1],[2*,2,2], and [2*,1,1,1,1] (parts with odd multiplicities are marked).
Triangle starts:
1;
0, 1;
1, 1;
0, 2, 1;
2, 2, 1;
0, 4, 3;
3, 4, 3, 1;
...
-
g := product((1+t*x^j)/(1-x^(2*j)), j = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n from 0 to 28 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 23 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(expand(`if`(j::odd, x, 1)*b(n-i*j, i-1)), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..20); # Alois P. Heinz, Nov 25 2015
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Expand[If[OddQ[j], x, 1]* b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2016, after Alois P. Heinz *)
-
T(n) = { Vec(prod(k=1, n, (1 + y*x^k)/(1 - x^(2*k)) + O(x*x^n))) }
{ my(t=T(10)); for(n=1, #t, print(Vecrev(t[n]))); } \\ Andrew Howroyd, Dec 22 2017
A305101
G.f.: Sum_{k>=1} x^k/(1+x^k) * Product_{k>=1} (1+x^k)/(1-x^k).
Original entry on oeis.org
0, 1, 2, 6, 11, 22, 40, 70, 116, 191, 304, 474, 726, 1094, 1624, 2384, 3453, 4950, 7030, 9890, 13798, 19108, 26264, 35858, 48652, 65615, 87996, 117396, 155826, 205854, 270728, 354506, 462306, 600544, 777184, 1002180, 1287889, 1649578, 2106152, 2680924
Offset: 0
-
nmax = 40; CoefficientList[Series[Sum[x^k/(1+x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020
Showing 1-10 of 11 results.
Comments