A006128
Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.
Original entry on oeis.org
0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Paul Erdős and Joseph Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J. 8, (1941), 335-345.
- John A. Ewell, Additive evaluation of the divisor function, Fibonacci Quart. 45 (2007), no. 1, 22-25. See Table 1.
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008; see p.27
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Arnold Knopfmacher and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- C. L. Mallows & N. J. A. Sloane, Emails, Jun. 1991
- Ljuben Mutafchiev, On the Largest Part Size and Its Multiplicity of a Random Integer Partition, arXiv:1712.03233 [math.PR], 2017.
- Omar E. Pol, Illustration of initial terms
- J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, p. 495.
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
- H. S. Wilf, A unified setting for selection algorithms (II), Annals Discrete Math., 2 (1978), 135-148.
The version for normal multisets is
A001787.
The version for factorizations is
A066637.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.
-
List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
-
a006128 = length . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
a:= n-> coeff(series(g,x,62),x,n):
seq(a(n), n=0..61);
# second Maple program:
a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
seq(a(n), n=0..61); # Alois P. Heinz, Aug 23 2019
-
a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
-
f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
-
a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
-
from sympy import divisor_count, npartitions
def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
A181187
Triangle read by rows: T(n,k) = sum of k-th largest elements in all partitions of n.
Original entry on oeis.org
1, 3, 1, 6, 2, 1, 12, 5, 2, 1, 20, 8, 4, 2, 1, 35, 16, 8, 4, 2, 1, 54, 24, 13, 7, 4, 2, 1, 86, 41, 22, 13, 7, 4, 2, 1, 128, 61, 35, 20, 12, 7, 4, 2, 1, 192, 95, 54, 33, 20, 12, 7, 4, 2, 1, 275, 136, 80, 49, 31, 19, 12, 7, 4, 2, 1, 399, 204, 121, 76, 48, 31, 19, 12, 7, 4, 2, 1, 556, 284
Offset: 1
From _Omar E. Pol_, Feb 13 2012: (Start)
Illustration of initial terms. First five rows of triangle as sums of columns from the partitions of the first five positive integers:
.
. 5
. 3+2
. 4 4+1
. 2+2 2+2+1
. 3 3+1 3+1+1
. 2 2+1 2+1+1 2+1+1+1
. 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1
. -------------------------------------
. 1, 3,1, 6,2,1, 12,5,2,1, 20,8,4,2,1 --> This triangle
. | |/| |/|/| |/|/|/| |/|/|/|/|
. 1, 2,1, 4,1,1, 7,3,1,1, 12,4,2,1,1 --> A066633
.
For more information see A207031 and A206563.
...
Triangle begins:
1;
3, 1;
6, 2, 1;
12, 5, 2, 1;
20, 8, 4, 2, 1;
35, 16, 8, 4, 2, 1;
54, 24, 13, 7, 4, 2, 1;
86, 41, 22, 13, 7, 4, 2, 1;
128, 61, 35, 20, 12, 7, 4, 2, 1;
192, 95, 54, 33, 20, 12, 7, 4, 2, 1;
275, 136, 80, 49, 31, 19, 12, 7, 4, 2, 1;
399, 204, 121, 76, 48, 31, 19, 12, 7, 4, 2, 1;
(End)
-
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i));
p(p(f, g), [0$i, g[1]])
fi
end:
T:= proc(n) local j, l, r, t;
l, r, t:= b(n, n), 1, 1;
for j from n to 2 by -1 do t:= t+l[j]; r:=r, t od;
seq([r][1+n-j], j=1..n)
end:
seq(T(n), n=1..14); # Alois P. Heinz, Apr 05 2012
-
Table[Plus @@ (PadRight[ #,n]& /@ IntegerPartitions[n]),{n,16}]
(* Second program: *)
T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; Table[Table[T[n, k], {k, n, 1, -1}] // Accumulate // Reverse, {n, 1, 16}] // Flatten (* Jean-François Alcover, Oct 10 2015, after Omar E. Pol *)
A066897
Total number of odd parts in all partitions of n.
Original entry on oeis.org
1, 2, 5, 8, 15, 24, 39, 58, 90, 130, 190, 268, 379, 522, 722, 974, 1317, 1754, 2330, 3058, 4010, 5200, 6731, 8642, 11068, 14076, 17864, 22528, 28347, 35490, 44320, 55100, 68355, 84450, 104111, 127898, 156779, 191574, 233625, 284070, 344745, 417292, 504151
Offset: 1
a(4) = 8 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], we have a total of 0+2+0+2+4=8 odd parts.
Cf.
A000041,
A001227,
A001620,
A002865,
A006128,
A060831,
A066898,
A066966,
A066967,
A103919,
A206563,
A207381,
A207382,
A209423,
A338156.
-
a066897 = p 0 1 where
p o _ 0 = o
p o k m | m < k = 0
| otherwise = p (o + mod k 2) k (m - k) + p o (k + 1) m
-- Reinhard Zumkeller, Mar 09 2012
-
a066897 = length . filter odd . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:=sum(x^(2*j-1)/(1-x^(2*j-1)),j=1..70)/product(1-x^j,j=1..70): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..44);
# Emeric Deutsch, Mar 13 2006
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50);
# Alois P. Heinz, Mar 22 2012
-
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
o[n_] := Sum[f[n, i], {i, 1, n, 2}]
e[n_] := Sum[f[n, i], {i, 2, n, 2}]
Table[o[n], {n, 1, 45}] (* A066897 *)
Table[e[n], {n, 1, 45}] (* A066898 *)
%% - % (* A209423 *)
(* Clark Kimberling, Mar 08 2012 *)
b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 26 2015, after Alois P. Heinz *)
A206563
Triangle read by rows: T(n,k) = number of odd/even parts >= k in all partitions of n, if k is odd/even.
Original entry on oeis.org
1, 2, 1, 5, 1, 1, 8, 4, 1, 1, 15, 5, 3, 1, 1, 24, 11, 5, 3, 1, 1, 39, 15, 9, 4, 3, 1, 1, 58, 28, 13, 9, 4, 3, 1, 1, 90, 38, 23, 12, 8, 4, 3, 1, 1, 130, 62, 33, 21, 12, 8, 4, 3, 1, 1, 190, 85, 51, 29, 20, 11, 8, 4, 3, 1, 1, 268, 131, 73, 48, 28, 20, 11, 8, 4, 3, 1, 1
Offset: 1
Calculation for n = 6. Write the partitions of 6 and below the sums of their columns:
.
. 6
. 3 + 3
. 4 + 2
. 2 + 2 + 2
. 5 + 1
. 3 + 2 + 1
. 4 + 1 + 1
. 2 + 2 + 1 + 1
. 3 + 1 + 1 + 1
. 2 + 1 + 1 + 1 + 1
. 1 + 1 + 1 + 1 + 1 + 1
. ------------------------
. 35, 16, 8, 4, 2, 1 --> Row 6 of triangle A181187.
. | /| /| /| /| /|
. | / | / | / | / | / |
. |/ |/ |/ |/ |/ |
. 19, 8, 4, 2, 1, 1 --> Row 6 of triangle A066633.
.
More generally, it appears that the sum of column k is also the total number of parts >= k in all partitions of n. It appears that the first differences of the column sums together with 1 give the number of occurrences of k in all partitions of n.
On the other hand we can see that the partitions of 6 contain:
24 odd parts >= 1 (the odd parts).
11 even parts >= 2 (the even parts).
5 odd parts >= 3.
3 even parts >= 4.
2 odd parts >= 5.
1 even part >= 6.
Then, using the values of the column sums, it appears that:
T(6,1) = 35 - 16 + 8 - 4 + 2 - 1 = 24
T(6,2) = 16 - 8 + 4 - 2 + 1 = 11
T(6,3) = 8 - 4 + 2 - 1 = 5
T(6,4) = 4 - 2 + 1 = 3
T(6,5) = 2 - 1 = 1
T(6,6) = 1 = 1
So the 6th row of our triangle gives 24, 11, 5, 3, 1, 1.
Finally, for all partitions of 6, we can write:
The number of odd parts is equal to T(6,1) = 24.
The number of even parts is equal to T(6,2) = 11.
The number of odd parts >= 3 is equal to T(6,3) = 5.
The number of even parts >= 4 is equal to T(6,4) = 3.
The number of odd parts >= 5 is equal to T(6,5) = 1.
The number of even parts >= 6 is equal to T(6,6) = 1.
More generally, we can write the same properties for any positive integer.
Triangle begins:
1;
2, 1;
5, 1, 1;
8, 4, 1, 1;
15, 5, 3, 1, 1;
24, 11, 5, 3, 1, 1;
39, 15, 9, 4, 3, 1, 1;
58, 28, 13, 9, 4, 3, 1, 1;
90, 38, 23, 12, 8, 4, 3, 1, 1;
130, 62, 33, 21, 12, 8, 4, 3, 1, 1;
A066967
Total sum of odd parts in all partitions of n.
Original entry on oeis.org
1, 2, 7, 10, 23, 36, 65, 94, 160, 230, 356, 502, 743, 1030, 1480, 2006, 2797, 3760, 5120, 6780, 9092, 11902, 15701, 20350, 26508, 34036, 43860, 55822, 71215, 89988, 113792, 142724, 179137, 223230, 278183, 344602, 426687, 525616, 647085, 792950
Offset: 1
a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the odd parts is (3+1)+(1+1)+(1+1+1+1) = 10.
-
g:=sum((2*i-1)*x^(2*i-1)/(1-x^(2*i-1)),i=1..50)/product(1-x^j,j=1..50): gser:=series(g,x=0,50): seq(coeff(gser,x^n),n=1..47);
# Emeric Deutsch, Feb 19 2006
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq (a(n), n=1..50);
# Alois P. Heinz, Mar 22 2012
-
max = 50; g = Sum[(2*i-1)*x^(2*i-1)/(1-x^(2*i-1)), {i, 1, max}]/Product[1-x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
Map[Total[Select[Flatten[IntegerPartitions[#]], OddQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
A207032
Triangle read by rows: T(n,k) = number of odd/even parts >= k in the last section of the set of partitions of n, if k is odd/even.
Original entry on oeis.org
1, 1, 1, 3, 0, 1, 3, 3, 0, 1, 7, 1, 2, 0, 1, 9, 6, 2, 2, 0, 1, 15, 4, 4, 1, 2, 0, 1, 19, 13, 4, 5, 1, 2, 0, 1, 32, 10, 10, 3, 4, 1, 2, 0, 1, 40, 24, 10, 9, 4, 4, 1, 2, 0, 1, 60, 23, 18, 8, 8, 3, 4, 1, 2, 0, 1, 78, 46, 22, 19, 8, 9, 3, 4, 1, 2, 0, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 0, 1;
3, 3, 0, 1;
7, 1, 2, 0, 1;
9, 6, 2, 2, 0, 1;
15, 4, 4, 1, 2, 0, 1;
19, 13, 4, 5, 1, 2, 0, 1;
32, 10, 10, 3, 4, 1, 2, 0, 1;
40, 24, 10, 9, 4, 4, 1, 2, 0, 1;
60, 23, 18, 8, 8, 3, 4, 1, 2, 0, 1;
78, 46, 22, 19, 8, 9, 3, 4, 1, 2, 0, 1;
Cf.
A006128,
A066897,
A066898,
A135010,
A138121,
A138135,
A138137,
A141285,
A181187,
A182703,
A206563,
A207031.
A209423
Difference between the number of odd parts and the number of even parts in all the partitions of n.
Original entry on oeis.org
1, 1, 4, 4, 10, 13, 24, 30, 52, 68, 105, 137, 202, 264, 376, 485, 669, 864, 1162, 1486, 1968, 2501, 3256, 4110, 5285, 6630, 8434, 10511, 13241, 16417, 20505, 25273, 31344, 38438, 47346, 57782, 70746, 85947, 104663, 126594, 153386, 184793, 222865, 267452
Offset: 1
The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1], a total of 15 odd parts and 5 even parts, so that a(5)=10.
-
b:= proc(n, i) option remember; local m, f, g;
m:= irem(i, 2);
if n=0 then [1, 0, 0]
elif i<1 then [0, 0, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0$3], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+m*g[1], f[3]+g[3]+(1-m)*g[1]]
fi
end:
a:= n-> b(n, n)[2] -b(n, n)[3]:
seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2012
g := add(x^j/(1+x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 08 2016
-
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
o[n_] := Sum[f[n, i], {i, 1, n, 2}]
e[n_] := Sum[f[n, i], {i, 2, n, 2}]
Table[o[n], {n, 1, 45}] (* A066897 *)
Table[e[n], {n, 1, 45}] (* A066898 *)
%% - % (* A209423 *)
b[n_, i_] := b[n, i] = Module[{m, f, g}, m = Mod[i, 2]; If[n==0, {1, 0, 0}, If[i<1, {0, 0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + m*g[[1]], f[[3]] + g[[3]] + (1-m)* g[[1]]}]]]; a[n_] := b[n, n][[2]] - b[n, n][[3]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
A067588
Total number of parts in all partitions of n into odd parts.
Original entry on oeis.org
0, 1, 2, 4, 6, 9, 14, 19, 26, 36, 48, 62, 82, 104, 132, 169, 210, 260, 324, 396, 484, 592, 714, 860, 1036, 1238, 1474, 1756, 2078, 2452, 2894, 3396, 3976, 4654, 5422, 6309, 7332, 8490, 9816, 11338, 13060, 15018, 17254, 19774, 22630, 25878, 29524, 33642
Offset: 0
A066966
Total sum of even parts in all partitions of n.
Original entry on oeis.org
0, 2, 2, 10, 12, 30, 40, 82, 110, 190, 260, 422, 570, 860, 1160, 1690, 2252, 3170, 4190, 5760, 7540, 10142, 13164, 17450, 22442, 29300, 37410, 48282, 61170, 78132, 98310, 124444, 155582, 195310, 242722, 302570, 373882, 462954, 569130, 700570, 856970
Offset: 1
a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10.
Cf.
A000041,
A000203,
A002865,
A066186,
A066897,
A066898,
A066967,
A113686,
A146076,
A206436,
A271342,
A338156.
-
g:=sum(2*j*x^(2*j)/(1-x^(2*j)),j=1..55)/product(1-x^j,j=1..55): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..41);
# Emeric Deutsch, Feb 20 2006
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50);
# Alois P. Heinz, Mar 22 2012
-
max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
-
a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ Joerg Arndt, Jan 24 2014
A116482
Triangle read by rows: T(n,k) is the number of partitions of n having k even parts (n>=0, 0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 3, 1, 4, 4, 2, 1, 5, 6, 3, 1, 6, 8, 5, 2, 1, 8, 11, 7, 3, 1, 10, 14, 10, 5, 2, 1, 12, 19, 14, 7, 3, 1, 15, 24, 19, 11, 5, 2, 1, 18, 31, 26, 15, 7, 3, 1, 22, 39, 34, 21, 11, 5, 2, 1, 27, 49, 45, 29, 15, 7, 3, 1, 32, 61, 58, 39, 22, 11, 5, 2, 1, 38, 76, 75, 52, 30
Offset: 0
T(7,2) = 3 because we have [4,2,1], [3,2,2] and [2,2,1,1,1].
Triangle starts:
1;
1;
1, 1;
2, 1;
2, 2, 1;
3, 3, 1;
4, 4, 2, 1;
5, 6, 3, 1;
6, 8, 5, 2, 1;
8, 11, 7, 3, 1;
10, 14, 10, 5, 2, 1;
12, 19, 14, 7, 3, 1;
15, 24, 19, 11, 5, 2, 1;
18, 31, 26, 15, 7, 3, 1;
22, 39, 34, 21, 11, 5, 2, 1;
27, 49, 45, 29, 15, 7, 3, 1;
Added entries for n=8 through n=15. - _Gregory L. Simay_, Nov 03 2015
From _Gregory L. Simay_, Nov 03 2015: (Start)
T(15,4) = T(7+2*4,4) = p(7) = 15, since 7 < 2*4 + 1.
T(15,3) = T(13,2) + T(9,3) = 26 + 3 = 29.
T(10,1) = T(8+2*1,1) = T(8,0) + T(6,0) + T(4,0) + T(2,0) + T(0,0) = 6 + 4 + 2 + 1 + 1 = 14.
T(15,3) = T(9+2*3) = e(9,3) = e(9,2) + e(3,2) = (e(9,1) + e(5,1) + e(1,1)) + e(3,1) = q(9) + q(7) + q(5) + q(3) + q(1) + q(5) + q(3) + q(1) + q(1) + q(3) + q(1) = q(9) + q(7) + 2*q(5) + 3*q(3) + 4*q(1) = 8 + 5 + 2*3 + 3*2 + 4*1 = 29 = the convolution sum of q(9-2j) with p(3+j,3).
(End)
-
g:=1/product((1-x^(2*j-1))*(1-t*x^(2*j)),j=1..20): gser:=simplify(series(g,x=0,22)): P[0]:=1: for n from 1 to 18 do P[n]:=coeff(gser,x^n) od: for n from 0 to 18 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; local j; if n=0 then 1 elif i<1
then 0 else []; for j from 0 to n/i do zip((x, y)->x+y, %,
[`if`(irem(i, 2)=0, 0$j, [][]), b(n-i*j, i-1)], 0) od; %[] fi
end:
T:= n-> b(n, n):
seq (T(n), n=0..30); # Alois P. Heinz, Jan 07 2013
-
nn=8;CoefficientList[Series[Product[1/(1-x^(2i-1))/(1-y x^(2i)),{i,1,nn}],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jan 07 2013 *)
Showing 1-10 of 23 results.
Comments