cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305102 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 4, 10, 23, 46, 88, 158, 274, 459, 748, 1190, 1858, 2846, 4292, 6384, 9373, 13602, 19536, 27782, 39158, 54740, 75928, 104562, 143036, 194423, 262704, 352988, 471778, 627382, 830352, 1093994, 1435132, 1874920, 2439832, 3163020, 4085825, 5259602, 6748136
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A006128 and A000009.
Convolution of A305082 and A000041.
Convolution of A000005 and A015128.
a(n) is the number of non-overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(Pi*sqrt(n)) * (2*gamma + log(4*n/Pi^2)) / (8*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A305122 G.f.: Sum_{k>=1} x^(2*k)/(1+x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 16, 28, 47, 78, 126, 198, 306, 464, 694, 1024, 1490, 2146, 3061, 4322, 6052, 8408, 11592, 15872, 21592, 29192, 39242, 52468, 69788, 92376, 121716, 159664, 208569, 271372, 351732, 454228, 584546, 749720, 958472, 1221560, 1552210, 1966698
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A305121 and A000009.
The g.f. Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 - x^k) = Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 + x^k - 2*x^k) is congruent mod 2 to Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) = -G(-x^2), where G(x) is the g.f. of A112329. It follows that a(n) is odd iff n = 2*k^2 for some positive integer k. - Peter Bala, Jan 07 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1+x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = A305101(n) - A305124(n).
a(n) ~ exp(sqrt(n)*Pi) * log(2) / (8*Pi*sqrt(n)).

A305124 G.f.: Sum_{k>=1} x^(2*k-1)/(1+x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 1, 4, 7, 14, 24, 42, 69, 113, 178, 276, 420, 630, 930, 1360, 1963, 2804, 3969, 5568, 7746, 10700, 14672, 19986, 27060, 36423, 48754, 64928, 86038, 113478, 149012, 194842, 253737, 329172, 425452, 547952, 703343, 899858, 1147680, 1459364, 1850310, 2339432
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A305123 and A000009.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1+x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = A305101(n) - A305122(n).
a(n) ~ exp(sqrt(n)*Pi) * log(2) / (8*Pi*sqrt(n)).

A335666 a(n) is the sum, over all overpartitions of n, of the overlined parts.

Original entry on oeis.org

1, 3, 10, 21, 46, 90, 168, 295, 511, 850, 1382, 2198, 3430, 5260, 7960, 11861, 17468, 25445, 36670, 52346, 74092, 103986, 144840, 200322, 275191, 375662, 509816, 687960, 923442, 1233340, 1639312, 2168999, 2857460, 3748772, 4898652, 6377023, 8271294, 10690830, 13771912, 17683642
Offset: 1

Views

Author

Jeremy Lovejoy, Jun 17 2020

Keywords

Examples

			The 8 overpartitions of 8 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 10.
		

Crossrefs

Cf. A305101 (number of overlined parts).

Programs

  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1+q^n).
a(n) = A235793(n) - A335651(n). - Omar E. Pol, Jun 17 2020
Showing 1-4 of 4 results.