cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A305122 G.f.: Sum_{k>=1} x^(2*k)/(1+x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 16, 28, 47, 78, 126, 198, 306, 464, 694, 1024, 1490, 2146, 3061, 4322, 6052, 8408, 11592, 15872, 21592, 29192, 39242, 52468, 69788, 92376, 121716, 159664, 208569, 271372, 351732, 454228, 584546, 749720, 958472, 1221560, 1552210, 1966698
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A305121 and A000009.
The g.f. Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 - x^k) = Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 + x^k - 2*x^k) is congruent mod 2 to Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) = -G(-x^2), where G(x) is the g.f. of A112329. It follows that a(n) is odd iff n = 2*k^2 for some positive integer k. - Peter Bala, Jan 07 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1+x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = A305101(n) - A305124(n).
a(n) ~ exp(sqrt(n)*Pi) * log(2) / (8*Pi*sqrt(n)).

A305124 G.f.: Sum_{k>=1} x^(2*k-1)/(1+x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 1, 4, 7, 14, 24, 42, 69, 113, 178, 276, 420, 630, 930, 1360, 1963, 2804, 3969, 5568, 7746, 10700, 14672, 19986, 27060, 36423, 48754, 64928, 86038, 113478, 149012, 194842, 253737, 329172, 425452, 547952, 703343, 899858, 1147680, 1459364, 1850310, 2339432
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A305123 and A000009.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1+x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = A305101(n) - A305122(n).
a(n) ~ exp(sqrt(n)*Pi) * log(2) / (8*Pi*sqrt(n)).

A305101 G.f.: Sum_{k>=1} x^k/(1+x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 2, 6, 11, 22, 40, 70, 116, 191, 304, 474, 726, 1094, 1624, 2384, 3453, 4950, 7030, 9890, 13798, 19108, 26264, 35858, 48652, 65615, 87996, 117396, 155826, 205854, 270728, 354506, 462306, 600544, 777184, 1002180, 1287889, 1649578, 2106152, 2680924
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A209423 and A000009.
Convolution of A015723 and A000041.
Convolution of A048272 and A015128.
a(n) is the number of overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1+x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(sqrt(n)*Pi) * log(2) / (4*Pi*sqrt(n)).
a(n) = A305122(n) + A305124(n).

A305104 G.f.: Sum_{k>=1} x^(2*k)/(1-x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 24, 44, 79, 134, 222, 358, 566, 876, 1334, 2000, 2960, 4326, 6253, 8946, 12680, 17816, 24832, 34352, 47192, 64404, 87354, 117796, 157976, 210764, 279812, 369744, 486413, 637188, 831324, 1080420, 1398968, 1805012, 2320992, 2974728, 3800618
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution A066898 of and A000009.
Convolution A090867 of and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1-x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*gamma + log(n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A305105 G.f.: Sum_{k>=1} x^(2*k-1)/(1-x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 3, 8, 17, 34, 64, 114, 195, 325, 526, 832, 1292, 1970, 2958, 4384, 6413, 9276, 13283, 18836, 26478, 36924, 51096, 70210, 95844, 130019, 175350, 235192, 313802, 416618, 550540, 724250, 948719, 1237732, 1608508, 2082600, 2686857, 3454590, 4427144, 5655652
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A066897 and A000009.
Convolution of A067588 and A000041.
Let A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 - x^k). Then A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 + x^k - 2*x^k) == Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) (mod 2). It follows from the comment in A001227 by Juri-Stepan Gerasimov, dated Jul 17 2016, that a(n) is odd iff n is a square or twice a square. - Peter Bala, Jan 10 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1-x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*gamma + log(16*n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A335651 a(n) is the sum, over all overpartitions of n, of the non-overlined parts.

Original entry on oeis.org

1, 5, 14, 35, 74, 150, 280, 505, 875, 1470, 2402, 3850, 6034, 9300, 14120, 21131, 31220, 45619, 65930, 94374, 133892, 188350, 262904, 364350, 501459, 685762, 932200, 1259944, 1693750, 2265380, 3015152, 3994585, 5268988, 6920700, 9053748, 11798873, 15319610, 19820738, 25557560
Offset: 1

Views

Author

Jeremy Lovejoy, Jun 17 2020

Keywords

Examples

			The 8 overpartitions of 3 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 14.
		

Crossrefs

Cf. A305102 (number of non-overlined parts).

Programs

  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1-q^n).
a(n) = A235793(n) - A335666(n). - Omar E. Pol, Jun 17 2020

A305119 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} 1/(1-x^k)^2.

Original entry on oeis.org

0, 1, 4, 11, 27, 58, 119, 227, 420, 744, 1287, 2160, 3561, 5739, 9113, 14224, 21924, 33327, 50126, 74531, 109802, 160211, 231875, 332821, 474313, 671072, 943411, 1317826, 1830290, 2527583, 3472446, 4746093, 6456291, 8741999, 11785768, 15822047, 21156278
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A006128 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[1/(1-x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(n/3)) * (2*gamma + log(3*n/Pi^2)) / (8*3^(1/4)*Pi*n^(3/4)), where gamma is the Euler-Mascheroni constant A001620.
Showing 1-7 of 7 results.