cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A116676 Number of odd parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 4, 5, 8, 10, 14, 16, 22, 26, 34, 43, 54, 64, 80, 96, 116, 142, 170, 202, 242, 288, 340, 404, 474, 556, 652, 762, 886, 1034, 1198, 1389, 1606, 1852, 2132, 2454, 2814, 3224, 3690, 4214, 4804, 5478, 6228, 7072, 8028, 9094, 10290, 11635, 13134
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

a(n) = Sum(k*A116675(n,k), k>=0).

Examples

			a(9) = 10 because in the partitions of 9 into distinct parts, namely, [9], [81], [72], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2], we have a total of 10 odd parts.
		

Crossrefs

Programs

  • Maple
    f:=product(1+x^j,j=1..64)*sum(x^(2*j-1)/(1+x^(2*j-1)),j=1..35): fser:=series(f,x=0,60): seq(coeff(fser,x,n),n=0..56);
    # second Maple program:
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 0] elif i<1 then [0, 0]
        else f:=b(n, i-1); g:=`if`(i>n, [0, 0], b(n-i, min(n-i, i-1)));
             [f[1]+g[1], f[2]+g[2] +irem(i, 2)*g[1]]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 21 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, Which [n == 0, {1, 0}, i<1 , {0, 0}, True, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, Min[n-i, i-1]]]; {f[[1]] + g[[1]],       f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 0, 60}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

G.f.: product(1+x^j, j=1..infinity)*sum(x^(2j-1)/(1+x^(2j-1)), j=1..infinity).
For n > 0, a(n) = A015723(n) - A116680(n). - Vaclav Kotesovec, May 26 2018
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018

A116680 Number of even parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 4, 5, 5, 8, 11, 14, 18, 23, 29, 37, 44, 55, 69, 83, 102, 124, 148, 178, 213, 253, 300, 356, 421, 494, 582, 680, 793, 926, 1074, 1246, 1446, 1668, 1922, 2215, 2545, 2918, 3345, 3823, 4366, 4982, 5668, 6445, 7321, 8300, 9401, 10639, 12021, 13566
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Examples

			a(9)=8 because in the partitions of 9 into distinct parts, namely, [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1], and [4,3,2], we have a total of 8 even parts. [edited by _Rishi Advani_, Jun 07 2019]
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), 3*m); [0,0] cat Coefficients(R!( (&*[1+x^j: j in [1..4*m]])*(&+[x^(2*k)/(1+x^(2*k)): k in [1..2*m]]) )); // G. C. Greubel, Jun 07 2019
    
  • Maple
    f:=product(1+x^j,j=1..70)*sum(x^(2*j)/(1+x^(2*j)),j=1..40): fser:=series(f,x=0,65): seq(coeff(fser,x,n),n=0..60);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 p+`if`(i::odd, 0, [0, p[1]]))(b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, May 24 2022
  • Mathematica
    With[{m = 25}, CoefficientList[Series[Product[1+x^j, {j,1,4*m}]* Sum[x^(2*k)/(1+x^(2*k)), {k,1,2*m}], {x,0,3*m}], x]] (* G. C. Greubel, Jun 07 2019 *)
  • PARI
    my(m=25); my(x='x+O('x^(3*m))); concat([0, 0], Vec( prod(j=1, 4*m, 1+x^j)*sum(k=1, 2*m, x^(2*k)/(1+x^(2*k))) )) \\ G. C. Greubel, Jun 07 2019
    
  • Sage
    m = 25
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(3*m)
    s = product(1+x^j for j in (1..4*m))*sum(x^(2*k)/(1+x^(2*k)) for k in (1..2*m))
    [0, 0] + s.coefficients() # G. C. Greubel, Jun 07 2019

Formula

a(n) = Sum_{k >= 0} k*A116679(n,k).
G.f.: (Product_{j >= 1} (1+x^j)) * (Sum_{k >= 1} x^(2*k)/(1+x^(2*k))).
For n > 0, a(n) = A015723(n) - A116676(n). - Vaclav Kotesovec, May 26 2018
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018

A305102 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 4, 10, 23, 46, 88, 158, 274, 459, 748, 1190, 1858, 2846, 4292, 6384, 9373, 13602, 19536, 27782, 39158, 54740, 75928, 104562, 143036, 194423, 262704, 352988, 471778, 627382, 830352, 1093994, 1435132, 1874920, 2439832, 3163020, 4085825, 5259602, 6748136
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A006128 and A000009.
Convolution of A305082 and A000041.
Convolution of A000005 and A015128.
a(n) is the number of non-overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(Pi*sqrt(n)) * (2*gamma + log(4*n/Pi^2)) / (8*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A341062 Sequence whose partial sums give A000005.

Original entry on oeis.org

1, 1, 0, 1, -1, 2, -2, 2, -1, 1, -2, 4, -4, 2, 0, 1, -3, 4, -4, 4, -2, 0, -2, 6, -5, 1, 0, 2, -4, 6, -6, 4, -2, 0, 0, 5, -7, 2, 0, 4, -6, 6, -6, 4, 0, -2, -2, 8, -7, 3, -2, 2, -4, 6, -4, 4, -4, 0, -2, 10, -10, 2, 2, 1, -3, 4, -6, 4, -2, 4, -6, 10, -10, 2, 2, 0, -2, 4, -6, 8, -5, -1, -2, 10, -8, 0, 0, 4, -6, 10
Offset: 1

Views

Author

Omar E. Pol, Feb 04 2021

Keywords

Comments

Essentially a duplicate of A051950.
Convolved with A000041 gives A138137.
Convolved with A000027 gives the nonzero terms of A006218.
Convolved with A000070 gives the nonzero terms of A006128.
Convolved with A014153 gives the nonzero terms of A284870.
Convolved with A036469 gives the nonzero terms of A305082.
Convolved with the nonzero terms of A006218 gives A055507.
Convolved with the nonzero terms of A000217 gives the nonzero terms of A078567.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Differences[Table[DivisorSigma[0, n], {n, 1, 90}]]] (* Amiram Eldar, Feb 06 2021 *)

Formula

a(n) = A051950(n) for n > 1.

A305101 G.f.: Sum_{k>=1} x^k/(1+x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 2, 6, 11, 22, 40, 70, 116, 191, 304, 474, 726, 1094, 1624, 2384, 3453, 4950, 7030, 9890, 13798, 19108, 26264, 35858, 48652, 65615, 87996, 117396, 155826, 205854, 270728, 354506, 462306, 600544, 777184, 1002180, 1287889, 1649578, 2106152, 2680924
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A209423 and A000009.
Convolution of A015723 and A000041.
Convolution of A048272 and A015128.
a(n) is the number of overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1+x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(sqrt(n)*Pi) * log(2) / (4*Pi*sqrt(n)).
a(n) = A305122(n) + A305124(n).

A305119 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} 1/(1-x^k)^2.

Original entry on oeis.org

0, 1, 4, 11, 27, 58, 119, 227, 420, 744, 1287, 2160, 3561, 5739, 9113, 14224, 21924, 33327, 50126, 74531, 109802, 160211, 231875, 332821, 474313, 671072, 943411, 1317826, 1830290, 2527583, 3472446, 4746093, 6456291, 8741999, 11785768, 15822047, 21156278
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A006128 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[1/(1-x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(n/3)) * (2*gamma + log(3*n/Pi^2)) / (8*3^(1/4)*Pi*n^(3/4)), where gamma is the Euler-Mascheroni constant A001620.
Showing 1-6 of 6 results.