cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A015723 Number of parts in all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 3, 3, 5, 8, 10, 13, 18, 25, 30, 40, 49, 63, 80, 98, 119, 149, 179, 218, 266, 318, 380, 455, 541, 640, 760, 895, 1050, 1234, 1442, 1679, 1960, 2272, 2635, 3052, 3520, 4054, 4669, 5359, 6142, 7035, 8037, 9170, 10460, 11896, 13517, 15349, 17394, 19691
Offset: 1

Views

Author

Keywords

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with a total of 1 + 2 + 2 + 3 = 8 parts, so a(6) = 8. - _Gus Wiseman_, May 09 2019
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    nn=50; Rest[CoefficientList[Series[D[Product[1+y x^i,{i,1,nn}],y]/.y->1,{x,0,nn}],x]]  (* Geoffrey Critzer, Oct 29 2012; fixed by Vaclav Kotesovec, Apr 16 2016 *)
    q[n_, k_] := q[n, k] = If[nVaclav Kotesovec, Apr 16 2016 *)
    Table[Length[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,50}] (* Gus Wiseman, May 09 2019 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0},
       Sum[{#[[1]], #[[2]] + #[[1]]*j}&@ b[n-i*j, i-1], {j, 0, Min[n/i, 1]}]]];
    a[n_] := b[n, n][[2]];
    Array[a, 50] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N); gf=sum(n=0,N, n*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf) /* Joerg Arndt, Oct 20 2012 */

Formula

G.f.: sum(k>=1, x^k/(1+x^k) ) * prod(m>=1, 1+x^m ). Convolution of A048272 and A000009. - Vladeta Jovovic, Nov 26 2002
G.f.: sum(k>=1, k*x^(k*(k+1)/2)/prod(i=1..k, 1-x^i ) ). - Vladeta Jovovic, Sep 21 2005
a(n) = A238131(n)+A238132(n) = sum_{k=1..n} A048272(k)*A000009(n-k). - Mircea Merca, Feb 26 2014
a(n) = Sum_{k>=1} k*A008289(n,k). - Vaclav Kotesovec, Apr 16 2016
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - Vaclav Kotesovec, May 19 2018
For n > 0, a(n) = A116676(n) + A116680(n). - Vaclav Kotesovec, May 26 2018

Extensions

Extended and corrected by Naohiro Nomoto, Feb 24 2002

A116676 Number of odd parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 4, 5, 8, 10, 14, 16, 22, 26, 34, 43, 54, 64, 80, 96, 116, 142, 170, 202, 242, 288, 340, 404, 474, 556, 652, 762, 886, 1034, 1198, 1389, 1606, 1852, 2132, 2454, 2814, 3224, 3690, 4214, 4804, 5478, 6228, 7072, 8028, 9094, 10290, 11635, 13134
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

a(n) = Sum(k*A116675(n,k), k>=0).

Examples

			a(9) = 10 because in the partitions of 9 into distinct parts, namely, [9], [81], [72], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2], we have a total of 10 odd parts.
		

Crossrefs

Programs

  • Maple
    f:=product(1+x^j,j=1..64)*sum(x^(2*j-1)/(1+x^(2*j-1)),j=1..35): fser:=series(f,x=0,60): seq(coeff(fser,x,n),n=0..56);
    # second Maple program:
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 0] elif i<1 then [0, 0]
        else f:=b(n, i-1); g:=`if`(i>n, [0, 0], b(n-i, min(n-i, i-1)));
             [f[1]+g[1], f[2]+g[2] +irem(i, 2)*g[1]]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 21 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, Which [n == 0, {1, 0}, i<1 , {0, 0}, True, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, Min[n-i, i-1]]]; {f[[1]] + g[[1]],       f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 0, 60}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

G.f.: product(1+x^j, j=1..infinity)*sum(x^(2j-1)/(1+x^(2j-1)), j=1..infinity).
For n > 0, a(n) = A015723(n) - A116680(n). - Vaclav Kotesovec, May 26 2018
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018

A305121 G.f.: Sum_{k>=1} x^(2*k)/(1+x^(2*k)) * Product_{k>=1} 1/(1-x^k).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 7, 9, 14, 20, 32, 43, 63, 85, 122, 162, 221, 292, 396, 514, 680, 878, 1147, 1465, 1886, 2391, 3050, 3836, 4841, 6048, 7579, 9403, 11685, 14419, 17806, 21845, 26810, 32725, 39947, 48528, 58926, 71267, 86151, 103750, 124860, 149791, 179551
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(2*k)/(1+x^(2*k)), {k, 1, nmax}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

For n > 0, a(n) = A209423(n) - A305123(n).
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)).

A305122 G.f.: Sum_{k>=1} x^(2*k)/(1+x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 16, 28, 47, 78, 126, 198, 306, 464, 694, 1024, 1490, 2146, 3061, 4322, 6052, 8408, 11592, 15872, 21592, 29192, 39242, 52468, 69788, 92376, 121716, 159664, 208569, 271372, 351732, 454228, 584546, 749720, 958472, 1221560, 1552210, 1966698
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A305121 and A000009.
The g.f. Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 - x^k) = Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 + x^k - 2*x^k) is congruent mod 2 to Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) = -G(-x^2), where G(x) is the g.f. of A112329. It follows that a(n) is odd iff n = 2*k^2 for some positive integer k. - Peter Bala, Jan 07 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1+x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = A305101(n) - A305124(n).
a(n) ~ exp(sqrt(n)*Pi) * log(2) / (8*Pi*sqrt(n)).

A341496 Number of partitions of n with exactly one repeated part and that part is even.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 4, 5, 6, 9, 12, 16, 20, 26, 34, 43, 53, 67, 82, 101, 124, 151, 184, 222, 267, 320, 381, 454, 539, 637, 752, 884, 1038, 1214, 1417, 1651, 1920, 2227, 2578, 2979, 3437, 3957, 4547, 5218, 5980, 6840, 7815, 8914, 10154, 11552, 13122
Offset: 0

Views

Author

Andrew Howroyd, Feb 13 2021

Keywords

Examples

			The a(4) = 1 partition is: 2+2.
The a(5) = 1 partition is: 1+2+2.
The a(6) = 1 partition is: 2+2+2.
The a(7) = 2 partitions are: 2+2+3, 1+2+2+2.
The a(8) = 4 partitions are: 4+4, 2+2+4, 1+2+2+3, 2+2+2+2.
		

Crossrefs

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n\4, x^(4*k)/(1 - x^(4*k)) + O(x*x^n)) * prod(k=1, n, 1 + x^k + O(x*x^n)), -(n+1))}

Formula

G.f.: (Sum_{k>=1} x^(4*k)/(1 - x^(4*k))) * Product_{k>=1} (1 + x^k).
a(n) = A090867(n) - A341497(n).
a(n) = A341497(n) - A116680(n).
a(n) = A341494(n) for even n; a(n) = A341495(n) for odd n.

A341497 Number of partitions of n with exactly one repeated part and that part is odd.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 9, 13, 17, 23, 30, 39, 49, 63, 78, 98, 122, 150, 184, 225, 272, 329, 397, 475, 567, 676, 802, 948, 1121, 1317, 1545, 1810, 2112, 2460, 2863, 3319, 3842, 4442, 5123, 5897, 6782, 7780, 8913, 10200, 11648, 13285, 15136, 17214, 19555, 22191, 25143
Offset: 0

Views

Author

Andrew Howroyd, Feb 13 2021

Keywords

Examples

			The a(2) = 1 partition is: 1+1.
The a(3) = 1 partition is: 1+1+1.
The a(4) = 2 partitions are: 1+1+2, 1+1+1+1.
The a(5) = 3 partitions are: 1+1+3, 1+1+1+2, 1+1+1+1+1.
		

Crossrefs

Programs

  • PARI
    seq(n)={Vec(sum(k=1, (n+2)\4, x^(4*k-2)/(1 - x^(4*k-2)) + O(x*x^n)) * prod(k=1, n, 1 + x^k + O(x*x^n)), -(n+1))}

Formula

G.f.: (Sum_{k>=1} x^(4*k-2)/(1 - x^(4*k-2))) * Product_{k>=1} (1 + x^k).
a(n) = A090867(n) - A341496(n).
a(n) = A116680(n) + A341496(n).
a(n) = A341495(n) for even n; a(n) = A341494(n) for odd n.
a(n) = (A067588(n) - A116676(n))/2. - Peter Bala, Jan 13 2025

A116679 Triangle read by rows: T(n,k) is the number of partitions of n into distinct part and having exactly k even parts (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 3, 1, 2, 4, 2, 2, 5, 3, 2, 6, 4, 3, 7, 4, 1, 3, 8, 6, 1, 3, 10, 8, 1, 4, 11, 10, 2, 5, 13, 11, 3, 5, 15, 14, 4, 5, 18, 18, 5, 6, 20, 21, 7, 7, 23, 24, 9, 1, 8, 26, 29, 12, 1, 8, 30, 36, 14, 1, 9, 34, 41, 18, 2, 11, 38, 47, 23, 3, 12, 43, 55, 28, 4
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

Row n contains floor((1 + sqrt(1+4*n))/2) terms.
Row sums yield A000009.
T(n,0) = A000700(n), T(n,1) = A096911(n) for n >= 1.
Sum_{k>=0} k*T(n,k) = A116680(n).

Examples

			T(9,2)=2 because we have [6,2,1] and [4,3,2].
Triangle starts:
  1;
  1;
  0, 1;
  1, 1;
  1, 1;
  1, 2;
  1, 2, 1;
  1, 3, 1;
		

Crossrefs

Programs

  • Maple
    g:=product((1+x^(2*j-1))*(1+t*x^(2*j)),j=1..25): gser:=simplify(series(g,x=0,38)): P[0]:=1: for n from 1 to 27 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 27 do seq(coeff(P[n],t,j),j=0..floor((sqrt(1+4*n)-1)/2)) od; # yields sequence in triangular form
  • Mathematica
    With[{m=25}, CoefficientList[CoefficientList[Series[Product[(1+x^(2*j- 1))*(1+t*x^(2*j)), {j,1,m+2}], {x,0,m}, {t,0,m}], x], t]]//Flatten (* G. C. Greubel, Jun 07 2019 *)

Formula

G.f.: Product_{j>=1} (1+x^(2*j-1))*(1+t*x^(2*j)).
Showing 1-7 of 7 results.