cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209427 T(n,k) = binomial(n,k)^n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 27, 27, 1, 1, 256, 1296, 256, 1, 1, 3125, 100000, 100000, 3125, 1, 1, 46656, 11390625, 64000000, 11390625, 46656, 1, 1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1, 1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2012

Keywords

Comments

Row sums equals A167010.
Column 1 forms A000312.
Antidiagonal sums form A209428.

Examples

			This triangle begins:
1;
1, 1;
1, 4, 1;
1, 27, 27, 1;
1, 256, 1296, 256, 1;
1, 3125, 100000, 100000, 3125, 1;
1, 46656, 11390625, 64000000, 11390625, 46656, 1;
1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1;
1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1; ...
		

Crossrefs

Cf. A167010 (row sums), A000312 (column 1), A209428.

Programs

  • Mathematica
    Table[Binomial[n,k]^n, {n,0,10}, {k,0,n}]// Flatten (* G. C. Greubel, Jan 03 2018 *)
  • PARI
    {T(n,k)=binomial(n,k)^n}
    for(n=0,10,for(k=0,n,print1(T(n,k),","));print(""))