A209445 a(n) = Pell(n)*A001227(n) for n >= 1, where A001227(n) is the number of odd divisors of n.
1, 2, 10, 12, 58, 140, 338, 408, 2955, 4756, 11482, 27720, 66922, 161564, 780100, 470832, 2273378, 8232630, 13250218, 31988856, 154455860, 186444716, 450117362, 1086679440, 3935214363, 6333631924, 30581480180, 36915112104, 89120964298, 430314081400, 519435045698
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 12*x^4 + 58*x^5 + 140*x^6 + 338*x^7 + ... where A(x) = 1*1*x + 2*1*x^2 + 5*2*x^3 + 12*1*x^4 + 29*2*x^5 + 70*2*x^6 + 169*2*x^7 + 408*1*x^8 + ... + Pell(n)*A001227(n)*x^n + ... The g.f. is also given by the identity: A(x) = 1*x/(1-2*x-x^2) + 5*x^3/(1-14*x^3-x^6) + 29*x^5/(1-82*x^5-x^10) + 169*x^7/(1-478*x^7-x^14) + 985*x^9/(1-2786*x^9-x^18) + 5741*x^11/(1-16238*x^11-x^22) + ... which involves odd-indexed Pell and A002203 numbers.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
A001227[n_]:= Sum[Mod[d, 2], {d, Divisors[n]}]; Table[Fibonacci[n, 2]*A001227[n], {n, 1, 1000}] (* G. C. Greubel, Jan 02 2018 *)
-
PARI
{Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)} {A002203(n)=Pell(n-1)+Pell(n+1)} {a(n)=polcoeff(sum(m=1,n,Pell(2*m-1)*x^(2*m-1)/(1-A002203(2*m-1)*x^(2*m-1)-x^(4*m-2)+x*O(x^n))),n)} for(n=1,40,print1(a(n),", "))
Comments