cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209446 a(n) = Pell(n)*A004016(n) for n >= 1, with a(0)=1, where A004016(n) is the number of integer solutions (x,y) to x^2 + x*y + y^2 = n.

Original entry on oeis.org

1, 6, 0, 30, 72, 0, 0, 2028, 0, 5910, 0, 0, 83160, 401532, 0, 0, 2824992, 0, 0, 79501308, 0, 463367580, 0, 0, 0, 7870428726, 0, 45872220270, 221490672624, 0, 0, 3116610274188, 0, 0, 0, 0, 127800022137480, 617073093431772, 0, 3596565555708780, 0, 0, 0, 122177355889216668
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A004016: 1 + 6*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - x^n).

Examples

			G.f.: A(x) = 1 + 6*x + 30*x^3 + 72*x^4 + 2028*x^7 + 5910*x^9 + 83160*x^12 + ...
where A(x) = 1 + 1*6*x + 5*6*x^3 + 12*6*x^4 + 169*12*x^7 + 985*6*x^9 + 13860*6*x^12 + ... + Pell(n)*A004016(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 6*( 1*x/(1-2*x-x^2) - 2*x^2/(1-6*x^2+x^4) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1-82*x^5-x^10) + 169*x^7/(1-478*x^7-x^14) + ...).
The values of the symbol Kronecker(n,3) repeat [1, -1, 0, ...].
		

Crossrefs

Programs

  • Mathematica
    A004016[n_]:= If[n < 1, Boole[n == 0], 6 DivisorSum[n, KroneckerSymbol[#, 3] &]]; Join[{1}, Table[Fibonacci[n, 2]*A004016[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 6*sum(m=1,n,kronecker(m,3)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 + 6*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).