cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209455 a(n) = Pell(n)*A002652(n) for n>=1, with a(0)=1, where A002652 lists the coefficients in theta series of Kleinian lattice Z[(-1+sqrt(-7))/2].

Original entry on oeis.org

1, 2, 8, 0, 72, 0, 0, 338, 3264, 1970, 0, 22964, 0, 0, 323128, 0, 4708320, 0, 10976840, 0, 0, 0, 745778864, 900234724, 0, 2623476242, 0, 0, 110745336312, 178241928596, 0, 0, 7524162792576, 0, 0, 0, 127800022137480, 205691031143924, 0, 0, 0, 0, 0, 40725785296405556
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A002652: 1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-x^n).

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 72*x^4 + 338*x^7 + 3264*x^8 + 1970*x^9 +...
where A(x) = 1 + 1*2*x + 2*4*x^2 + 12*6*x^4 + 169*2*x^7 + 408*8*x^8 + 985*2*x^9 + 5741*4*x^11 + 80782*4*x^14 + 470832*10*x^16 +...+ Pell(n)*A002652(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 2*( 1*x/(1-2*x-x^2) + 2*x^2/(1-6*x^2+x^4) - 5*x^3/(1-14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1-82*x^5-x^10) - 70*x^6/(1-198*x^6+x^12) + 0*169*13*x^7/(1+478*x^7-x^14) +...).
The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    terms = 44; s = 1 + 2 Sum[x^n*Fibonacci[n, 2]*KroneckerSymbol[n, 7]/(1 + (-1)^n*x^(2*n) - x^n*(Fibonacci[n - 1, 2] + Fibonacci[n + 1, 2])), {n, 1, terms}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 05 2017 *)
    A002652[n_]:= If[n < 1, Boole[n == 0], 2*Sum[KroneckerSymbol[-7, d], {d, Divisors[n]}]]; Join[{1}, Table[Fibonacci[n, 2]*A002652[n], {n,1,50}]] (* G. C. Greubel, Jan 03 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 2*sum(m=1,n,Pell(m)*kronecker(m,7)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 + 2*Sum_{n>=1} Pell(n)*Kronecker(n,7)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
G.f.: 1 + 2*Sum_{n>=1} F(n,2)*Kronecker(n,7)*x^n/(1 + (-1)^n*x^(2*n)-x^n* (F(n-1,2)+F(n+1,2))), where F is the Fibonacci polynomial. - Jean-François Alcover, Jul 05 2017