cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209456 a(n) = Pell(n)*A028594(n) for n>=1, with a(0)=1, where A028594 lists the coefficients in (theta_3(x)*theta_3(7*x)+theta_2(x)*theta_2(7*x))^2.

Original entry on oeis.org

1, 4, 24, 80, 336, 696, 3360, 676, 24480, 51220, 171216, 275568, 1552320, 1873816, 969384, 18722400, 58383168, 81841608, 428096760, 530008720, 2687063904, 617823440, 13424019552, 21605633376, 130401532800, 162655527004, 532025081616, 1223259207200
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A028594:
1 + 4*Sum_{n>=1} Chi(n,7)*n*x^n/(1-x^n).
Here Chi(n,7) = principal Dirichlet character of n modulo 7.

Examples

			G.f.: A(x) = 1 + 4*x + 24*x^2 + 80*x^3 + 336*x^4 + 696*x^5 + 3360*x^6 +...
where A(x) = 1 + 1*4*x + 2*12*x^2 + 5*16*x^3 + 12*28*x^4 + 29*24*x^5 + 70*48*x^6 + 169*4*x^7 + 408*60*x^8 + 985*52*x^9 +...+ Pell(n)*A028594(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 5*3*x^3/(1-14*x^3-x^6) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 70*6*x^6/(1-198*x^6+x^12) + 0*169*7*x^7/(1+478*x^7-x^14) +...).
The values of the Dirichlet character Chi(n,7) repeat [1,1,1,1,1,1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A028594[n_]:= If[n < 1, Boole[n == 0], 4*Sum[If[Mod[d, 7] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A028594[n], {n,1,50}]] (* G. C. Greubel, Jan 03 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 4*sum(m=1,n,Pell(m)*kronecker(m,7)^2*m*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: 1 + 4*Sum_{n>=1} Pell(n)*Chi(n,7)*n*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).