A209528 The number of length n ternary sequences in which no symbol appears exactly once.
1, 0, 3, 3, 21, 63, 243, 969, 3657, 12987, 43959, 143685, 458109, 1435047, 4439451, 13612257, 41474577, 125798643, 380343519, 1147320285, 3455328261, 10394294175, 31242648963, 93853773369, 281825558361, 846030320043, 2539248584583, 7620161669109
Offset: 0
Examples
a(2)=3 because we have (letting our alphabet be {0,1,2}) three length two sequences: (0,0), (1,1), (2,2). a(3)=3 because we have: (0,0,0), (1,1,1), (2,2,2).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-40,82,-91,52,-12).
Crossrefs
Cf. A130102.
Programs
-
Mathematica
nn=20; a=Exp[x]-x; Range[0,nn]! CoefficientList[Series[a^3, {x,0,nn}], x] LinearRecurrence[{10,-40,82,-91,52,-12},{1,0,3,3,21,63,243,969,3657,12987},30] (* Harvey P. Dale, Aug 20 2015 *)
-
PARI
Vec(-(72*x^9 -312*x^8 +546*x^7 -492*x^6 +325*x^5 -202*x^4 +109*x^3 -43*x^2 +10*x -1) / ((x -1)^3*(2*x -1)^2*(3*x -1)) + O(x^100)) \\ Colin Barker, Nov 30 2014
Formula
E.g.f.: (exp(x)-x)^3.
For n>3: a(n) = 3^n - 3*n*2^(n-1) + 3*n*(n-1).
G.f.: -(72*x^9 -312*x^8 +546*x^7 -492*x^6 +325*x^5 -202*x^4 +109*x^3 -43*x^2 +10*x -1) / ((x -1)^3*(2*x -1)^2*(3*x -1)). - Colin Barker, Nov 30 2014