A209561 Triangle of coefficients of polynomials u(n,x) jointly generated with A209562; see the Formula section.
1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 7, 7, 4, 1, 5, 11, 14, 11, 5, 1, 6, 16, 25, 25, 16, 6, 1, 7, 22, 41, 50, 41, 22, 7, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 11, 56, 175, 375, 582, 672
Offset: 1
Examples
First five rows: 1 1...1 2...2...1 3...4...3...1 4...7...7...4...1 First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
a209561 n k = a209561_tabl !! (n-1) !! (k-1) a209561_row n = a209561_tabl !! (n-1) a209561_tabl = [1] : iterate (\row -> zipWith (+) ([1] ++ row) (row ++ [0])) [1,1] -- Reinhard Zumkeller, Dec 26 2012
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209561 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209562 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=x*u(n-1,x)+v(n-1,x) +1,
where u(1,x)=1, v(1,x)=1.
T(n,n) = 1; T(n,k) = A051597(n-2,k-1), 1 <= k < n. - Reinhard Zumkeller, Dec 26 2012
Comments