A209612 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations and reflections.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 12, 17, 12, 3, 1, 1, 4, 19, 41, 41, 19, 4, 1, 1, 4, 27, 78, 116, 78, 27, 4, 1, 1, 5, 38, 148, 298, 298, 148, 38, 5, 1, 1, 5, 50, 250, 680, 932, 680, 250, 50, 5, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 2, 4, 2, 1; 1, 3, 8, 8, 3, 1; 1, 3, 12, 17, 12, 3, 1; 1, 4, 19, 41, 41, 19, 4, 1; 1, 4, 27, 78,116, 78, 27, 4, 1; 1, 5, 38,148,298,298,148, 38, 5, 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Tilman Piesk, Partition related number triangles
Programs
-
Mathematica
b[n_, k_] := Binomial[n - 1, n - k]*Binomial[n, n - k]; T[n_, k_] := (n*Binomial[Quotient[n - 1, 2], Quotient[k - 1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]] + DivisorSum[GCD[n, k], EulerPhi[#]* b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#]*b[n/#, (n + 1 - k)/#]&] - k*Binomial[n, k]^2/(n - k + 1))/(2*n); Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
-
PARI
b(n,k)=binomial(n-1,n-k)*binomial(n,n-k); T(n,k)=(n*binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2) + sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/(2*n); \\ Andrew Howroyd, Nov 15 2017
Comments