cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209612 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations and reflections.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 12, 17, 12, 3, 1, 1, 4, 19, 41, 41, 19, 4, 1, 1, 4, 27, 78, 116, 78, 27, 4, 1, 1, 5, 38, 148, 298, 298, 148, 38, 5, 1, 1, 5, 50, 250, 680, 932, 680, 250, 50, 5, 1
Offset: 1

Views

Author

Tilman Piesk, Mar 10 2012

Keywords

Comments

Like the Narayana triangle A001263 (and unlike A152176) this triangle is symmetric.

Examples

			Triangle begins:
1;
1,  1;
1,  1,  1;
1,  2,  2,  1;
1,  2,  4,  2,  1;
1,  3,  8,  8,  3,  1;
1,  3, 12, 17, 12,  3,  1;
1,  4, 19, 41, 41, 19,  4,  1;
1,  4, 27, 78,116, 78, 27,  4,  1;
1,  5, 38,148,298,298,148, 38,  5,  1
		

Crossrefs

Cf. A111275 (row sums)

Programs

  • Mathematica
    b[n_, k_] := Binomial[n - 1, n - k]*Binomial[n, n - k];
    T[n_, k_] := (n*Binomial[Quotient[n - 1, 2], Quotient[k - 1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]] + DivisorSum[GCD[n, k], EulerPhi[#]* b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#]*b[n/#, (n + 1 - k)/#]&] - k*Binomial[n, k]^2/(n - k + 1))/(2*n);
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
  • PARI
    b(n,k)=binomial(n-1,n-k)*binomial(n,n-k);
    T(n,k)=(n*binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2) + sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/(2*n); \\ Andrew Howroyd, Nov 15 2017

Formula

T(n,k) = (A088855(n,k) + A209805(n,k))/2. - Andrew Howroyd, Nov 15 2017