cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209631 Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to identity function, evaluated at k.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 41, 5, 1, 1, 6, 33, 127, 196, 6, 1, 1, 7, 49, 280, 967, 1057, 7, 1, 1, 8, 68, 518, 2883, 8549, 6322, 8, 1, 1, 9, 90, 859, 6689, 34817, 85829, 41393, 9, 1, 1, 10, 115, 1321, 13310, 101841, 481477
Offset: 0

Views

Author

Peter Luschny, Mar 11 2012

Keywords

Comments

Motivation: The exponential transform applied n times to the constant function 1 evaluated at k was studied by E. T. Bell (see A144150).

Examples

			n\k [0][1][2] [3]   [4]    [5]     [6]
[0]  0, 1, 2,  3,    4,     5,      6
[1]  1, 1, 3, 10,   41,   196,   1057   [A000248]
[2]  1, 1, 4, 20,  127,   967,   8549   [A007550]
[3]  1, 1, 5, 33,  280,  2883,  34817
[4]  1, 1, 6, 49,  518,  6689, 101841
[5]  1, 1, 7, 68,  859, 13310, 243946
[6]  1, 1, 8, 90, 1321, 23851, 510502
column3(n) = (3*n^2 + 11*n + 6)/2!
column4(n) = (18*n^3 + 93*n^2 + 111*n + 24)/3!
column5(n) = (180*n^4 + 1180*n^3 + 2160*n^2 + 1064*n + 120)/4!
column6(n) = (2700*n^5+21225*n^4+51850*n^3+41835*n^2+8510*n+720)/5!
		

Crossrefs

Programs

  • Maple
    # Implementation after Alois P. Heinz.
    exptr := proc(p) local g; g := proc(n) option remember; local k;
    `if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end:
    A209631 := (n,k) -> (exptr@@n)(m->m)(k):
    seq(lprint(seq(A209631(n,k), k=0..6)), n=0..6);
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = Module[{k}, If[n == 0, 1, Sum[Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n}]]]; g]; A209631[n_, k_] := Nest[exptr, Identity, n][k]; Table[A209631[n-k , k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 27 2014, after Alois P. Heinz *)