A209631 Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to identity function, evaluated at k.
0, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 41, 5, 1, 1, 6, 33, 127, 196, 6, 1, 1, 7, 49, 280, 967, 1057, 7, 1, 1, 8, 68, 518, 2883, 8549, 6322, 8, 1, 1, 9, 90, 859, 6689, 34817, 85829, 41393, 9, 1, 1, 10, 115, 1321, 13310, 101841, 481477
Offset: 0
Examples
n\k [0][1][2] [3] [4] [5] [6] [0] 0, 1, 2, 3, 4, 5, 6 [1] 1, 1, 3, 10, 41, 196, 1057 [A000248] [2] 1, 1, 4, 20, 127, 967, 8549 [A007550] [3] 1, 1, 5, 33, 280, 2883, 34817 [4] 1, 1, 6, 49, 518, 6689, 101841 [5] 1, 1, 7, 68, 859, 13310, 243946 [6] 1, 1, 8, 90, 1321, 23851, 510502 column3(n) = (3*n^2 + 11*n + 6)/2! column4(n) = (18*n^3 + 93*n^2 + 111*n + 24)/3! column5(n) = (180*n^4 + 1180*n^3 + 2160*n^2 + 1064*n + 120)/4! column6(n) = (2700*n^5+21225*n^4+51850*n^3+41835*n^2+8510*n+720)/5!
Links
- Discussion on seqcomp: A little challenge
Programs
-
Maple
# Implementation after Alois P. Heinz. exptr := proc(p) local g; g := proc(n) option remember; local k; `if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end: A209631 := (n,k) -> (exptr@@n)(m->m)(k): seq(lprint(seq(A209631(n,k), k=0..6)), n=0..6);
-
Mathematica
exptr[p_] := Module[{g}, g[n_] := g[n] = Module[{k}, If[n == 0, 1, Sum[Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n}]]]; g]; A209631[n_, k_] := Nest[exptr, Identity, n][k]; Table[A209631[n-k , k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 27 2014, after Alois P. Heinz *)
Comments