A209637 Matula-numbers computed for rooted trees encoded by A071162 when interpreted in once-halved bit-tuple format.
1, 2, 3, 4, 5, 7, 6, 8, 11, 17, 13, 19, 10, 14, 12, 16, 31, 59, 41, 67, 29, 43, 37, 53, 22, 34, 26, 38, 20, 28, 24, 32, 127, 277, 179, 331, 109, 191, 157, 241, 79, 139, 101, 163, 71, 107, 89, 131, 62, 118, 82, 134, 58, 86, 74, 106, 44, 68, 52, 76, 40, 56, 48
Offset: 0
References
- Mueller, Szymanski, Knop and Trinajstic, A Comparison between the Matula Numbers and Bit-tuple Notation for Rooted Trees J. Chem. Inf. Comput. Sci. 1995, 35, pp. 211--213.
Programs
-
Python
from sympy import prime from mpmath import log def a054429(n): return 3*(2**int(log(n, 2))) - (n + 1) def a209636(n): n = 2*n m = 1 if n<2: return 1 while n>1: if n%2==0: n/=2 m*=2 else: n=(n - 1)/2 m=prime(m) return m def a(n): return 1 if n==0 else a209636(a054429(n)) # Indranil Ghosh, May 26 2017
Comments