cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209637 Matula-numbers computed for rooted trees encoded by A071162 when interpreted in once-halved bit-tuple format.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 8, 11, 17, 13, 19, 10, 14, 12, 16, 31, 59, 41, 67, 29, 43, 37, 53, 22, 34, 26, 38, 20, 28, 24, 32, 127, 277, 179, 331, 109, 191, 157, 241, 79, 139, 101, 163, 71, 107, 89, 131, 62, 118, 82, 134, 58, 86, 74, 106, 44, 68, 52, 76, 40, 56, 48
Offset: 0

Views

Author

Antti Karttunen, Mar 11 2012

Keywords

Comments

Sequence A209638 gives the same terms sorted into ascending order.

References

  • Mueller, Szymanski, Knop and Trinajstic, A Comparison between the Matula Numbers and Bit-tuple Notation for Rooted Trees J. Chem. Inf. Comput. Sci. 1995, 35, pp. 211--213.

Programs

  • Python
    from sympy import prime
    from mpmath import log
    def a054429(n): return 3*(2**int(log(n, 2))) - (n + 1)
    def a209636(n):
        n = 2*n
        m = 1
        if n<2: return 1
        while n>1:
            if n%2==0:
                n/=2
                m*=2
            else:
                n=(n - 1)/2
                m=prime(m)
        return m
    def a(n): return 1 if n==0 else a209636(a054429(n)) # Indranil Ghosh, May 26 2017

Formula