cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A209673 a(n) = count of monomials, of degree k=n, in the Schur symmetric polynomials s(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 1, 4, 19, 116, 751, 5552, 43219, 366088, 3245311, 30569012, 299662672, 3079276708, 32773002718, 362512238272, 4136737592323, 48773665308176, 591313968267151, 7375591544495636, 94340754464144215, 1237506718985945656, 16608519982801477908, 228013066931927465872
Offset: 0

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Comments

Main diagonal of triangle A191714.
a(n) is also the number of semistandard Young tableaux of size and maximal entry n. - Christian Stump, Oct 09 2015

Crossrefs

Programs

  • Mathematica
    (* see A191714 *)
    Tr /@ Table[(stanley[#, l] & /@ Partitions[l]), {l, 11}]
    (* or *)
    Table[SeriesCoefficient[1/((1-x)^(n*(n+1)/2) * (1+x)^(n*(n-1)/2)), {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 06 2025 *)

Extensions

a(12)-a(22) from Alois P. Heinz, Mar 11 2012
Typo in Mathematica program fixed by Vaclav Kotesovec, Mar 19 2015

A209664 T(n,k) = count of degree k monomials in the power sum symmetric polynomials p(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 2, 6, 3, 14, 39, 5, 34, 129, 356, 7, 74, 399, 1444, 4055, 11, 166, 1245, 5876, 20455, 57786, 15, 350, 3783, 23604, 102455, 347010, 983535, 22, 746, 11514, 94852, 513230, 2083902, 6887986, 19520264, 30, 1546, 34734, 379908, 2567230, 12505470, 48219486, 156167944, 441967518
Offset: 1

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Examples

			Table starts as:
:  1;
:  2,   6;
:  3,  14,   39;
:  5,  34,  129,  356;
:  7,  74,  399, 1444,  4055;
: 11, 166, 1245, 5876, 20455, 57786;
		

Crossrefs

Main diagonal is A124577; row sums are A209665.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 24 2016
  • Mathematica
    p[n_Integer, v_] := Sum[Subscript[x, j]^n, {j, v}]; p[par_?PartitionQ, v_] := Times @@ (p[#, v] & /@ par); Table[Tr[(p[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 11}, {k, l}]

A209667 a(n) = count of monomials, of degrees k=0 to n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 1, 9, 76, 902, 11635, 192205, 3450337, 73128340, 1696862300, 44414258862, 1264163699189, 39640715859359, 1340191402045395, 49097854149726795, 1924982506686743639, 80831323253459088871, 3607487926962810556542, 170964537623741430399076
Offset: 0

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    a:= n-> add(b(n$2, k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 04 2016
  • Mathematica
    h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr/@ Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]

Formula

Row sums of table A209666.

Extensions

a(0), a(11)-a(18) from Alois P. Heinz, Mar 04 2016

A209766 Triangle of coefficients of polynomials v(n,x) jointly generated with A209765; see the Formula section.

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 1, 3, 13, 17, 1, 3, 13, 43, 41, 1, 3, 13, 55, 133, 99, 1, 3, 13, 55, 209, 391, 239, 1, 3, 13, 55, 233, 739, 1113, 577, 1, 3, 13, 55, 233, 939, 2469, 3095, 1393, 1, 3, 13, 55, 233, 987, 3589, 7903, 8457, 3363, 1, 3, 13, 55, 233, 987, 4085
Offset: 1

Views

Author

Clark Kimberling, Mar 14 2012

Keywords

Comments

Limiting row: F(1+3k), where F=A000045 (Fibonacci numbers)
Coefficient of x^n in u(n,x): A001333(n)
Row sums: 1,4,11,34,101,304,... A060925.
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...3
1...3...7
1...3...13...17
1...3...13...43...41
First three polynomials v(n,x): 1, 1 + 3x , 1 + 3x + 7x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209765 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209766 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A081250 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A060925 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A033999 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A042963 signed *)

Formula

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Showing 1-4 of 4 results.