cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209668 a(n) = count of monomials, of degree k = n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 1, 7, 55, 631, 8001, 130453, 2323483, 48916087, 1129559068, 29442232007, 835245785452, 26113646252773, 880685234758941, 32191922753658129, 1259701078978200555, 52802268925363689079, 2352843030410455053891, 111343906794849929711260, 5567596199767400904172045
Offset: 0

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Comments

a(n) is the number of partitions of n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order. a(2) = 7: 2aa, 2ab, 2bb, 1a1a, 1a1b, 1b1a, 1b1b. - Alois P. Heinz, Aug 30 2015

Crossrefs

Main diagonal of A209666 and A261718.
Cf. A261783.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr /@ Table[(h[#, l] & /@ Partitions[l]) /. Subscript[x, _] -> 1, {l, 10}]
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, k] * Binomial[i+k-1, k-1]^j, {j, 0, n/i}]]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)

Formula

a(n) ~ c * n^n, where c = A247551 = Product_{k>=2} 1/(1-1/k!) = 2.529477472... . - Vaclav Kotesovec, Nov 15 2016
a(n) = [x^n] Product_{k>=1} 1 / (1 - binomial(k+n-1,n-1)*x^k). - Ilya Gutkovskiy, May 09 2021

Extensions

a(0)=1 prepended and a(11)-a(19) added by Alois P. Heinz, Aug 29 2015