A209815
Number of partitions of 2n in which every part is
0, 1, 4, 10, 23, 47, 90, 164, 288, 488, 807, 1303, 2063, 3210, 4920, 7434, 11098, 16380, 23928, 34624, 49668, 70667, 99795, 139935, 194930, 269857, 371413, 508363, 692195, 937838, 1264685, 1697810, 2269557, 3021462, 4006812, 5293650, 6968730, 9142306, 11954194
Offset: 1
Keywords
Examples
The 4 partitions of 6 with parts <3: 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1. Matching partitions of 2 into rationals as described: 2/3 + 2/3 + 2/3 2/3 + 2/3 + 1/3 + 1/3 2/3 + 1/3 + 1/3 + 1/3 + 1/3 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a209815 n = p [1..n-1] (2*n) where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Nov 14 2013
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> b(2*n, n-1): seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2012
-
Mathematica
f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n - 1 &]]; Table[f[n], {n, 1, 34}] (* A209815 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n-1]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)
Formula
a(n) = A008284(3*n-1,n-1). - Hans Loeblich Apr 18 2019
Extensions
More terms from Alois P. Heinz, Jul 09 2012