cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209815 Number of partitions of 2n in which every part is

Original entry on oeis.org

0, 1, 4, 10, 23, 47, 90, 164, 288, 488, 807, 1303, 2063, 3210, 4920, 7434, 11098, 16380, 23928, 34624, 49668, 70667, 99795, 139935, 194930, 269857, 371413, 508363, 692195, 937838, 1264685, 1697810, 2269557, 3021462, 4006812, 5293650, 6968730, 9142306, 11954194
Offset: 1

Views

Author

Clark Kimberling, Mar 13 2012

Keywords

Examples

			The 4 partitions of 6 with parts <3:
2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1.
Matching partitions of 2 into rationals as described:
2/3 + 2/3 + 2/3
2/3 + 2/3 + 1/3 + 1/3
2/3 + 1/3 + 1/3 + 1/3 + 1/3
1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3.
		

Crossrefs

Cf. A209816.
Cf. A231429.

Programs

  • Haskell
    a209815 n = p [1..n-1] (2*n) where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 14 2013
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(2*n, n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012
  • Mathematica
    f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n - 1 &]];  Table[f[n], {n, 1, 34}]  (* A209815 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n-1]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)

Formula

a(n) = A008284(3*n-1,n-1). - Hans Loeblich Apr 18 2019

Extensions

More terms from Alois P. Heinz, Jul 09 2012