A209817
Number of partitions of 3n in which every part is
0, 1, 5, 19, 54, 141, 331, 733, 1527, 3060, 5888, 11004, 19978, 35452, 61538, 104875, 175618, 289656, 470914, 755880, 1198693, 1880246, 2918919, 4488553, 6840398, 10337947, 15500575, 23070000, 34094908, 50055877, 73026093, 105902689, 152706404, 219004225
Offset: 1
Keywords
Examples
The 5 partitions of 9 with parts <3 are as follows: 2+2+2+2+1 2+2+2+1+1+1 2+2+1+1+1+1+1 2+1+1+1+1+1+1+1 1+1+1+1+1+1+1+1+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A209818.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, b(n-i, i)))) end: a:= n-> b(3*n, n-1): seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2012
-
Mathematica
f[n_] := Length[Select[IntegerPartitions[3 n], First[#] <= n - 1 &]]; Table[f[n], {n, 1, 25}] (* A209817 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[3*n, n-1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jul 09 2012