cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A209818 Number of partitions of 3n in which every part is <=n.

Original entry on oeis.org

1, 4, 12, 34, 84, 199, 436, 919, 1845, 3590, 6751, 12384, 22142, 38797, 66634, 112540, 187013, 306421, 495332, 791131, 1249153, 1951915, 3019969, 4630063, 7037286, 10610240, 15874998, 23582081, 34791668, 50999319, 74297620, 107608848, 154986104, 222037997
Offset: 1

Views

Author

Clark Kimberling, Mar 13 2012

Keywords

Comments

Also, the number of partitions of 4n into n parts. - Seiichi Manyama, May 07 2018

Examples

			The 4 partitions of 6 with parts <3:
2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1.
From _Seiichi Manyama_, May 07 2018: (Start)
n | Partitions of 4n into n parts
--+-------------------------------------------
1 | 4;
2 | 7+1, 6+2, 5+3, 4+4;
3 | 10+1+1, 9+2+1, 8+3+1, 8+2+2, 7+4+1, 7+3+2,
  |  6+5+1, 6+4+2, 6+3+3, 5+5+2, 5+4+3, 4+4+4; (End)
		

Crossrefs

Cf. A209817.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(3*n, n):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012
  • Mathematica
    f[n_] := Length[Select[IntegerPartitions[3n], First[#] <= n &]]; Table[f[n], {n, 1, 25}] (* A209818 *)
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,3*n}],{n,1,20}] (* Vaclav Kotesovec, May 25 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[3*n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)
    Table[Length@IntegerPartitions[4n, {n}], {n, 25}] (* Vladimir Reshetnikov, Jul 24 2016 *)

Formula

For n>3, a(n) = A000041(3*n) - A000070(2*n-1) + A000097(n-3). - Vaclav Kotesovec, May 25 2015
a(n) ~ exp(Pi*sqrt(2*n))/(12*sqrt(3)*n). - Vaclav Kotesovec, May 25 2015

Extensions

More terms from Alois P. Heinz, Jul 09 2012
Showing 1-1 of 1 results.