cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A209817 Number of partitions of 3n in which every part is

Original entry on oeis.org

0, 1, 5, 19, 54, 141, 331, 733, 1527, 3060, 5888, 11004, 19978, 35452, 61538, 104875, 175618, 289656, 470914, 755880, 1198693, 1880246, 2918919, 4488553, 6840398, 10337947, 15500575, 23070000, 34094908, 50055877, 73026093, 105902689, 152706404, 219004225
Offset: 1

Views

Author

Clark Kimberling, Mar 13 2012

Keywords

Examples

			The 5 partitions of 9 with parts <3 are as follows:
2+2+2+2+1
2+2+2+1+1+1
2+2+1+1+1+1+1
2+1+1+1+1+1+1+1
1+1+1+1+1+1+1+1+1.
		

Crossrefs

Cf. A209818.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(3*n, n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012
  • Mathematica
    f[n_] := Length[Select[IntegerPartitions[3 n], First[#] <= n - 1 &]]; Table[f[n], {n, 1, 25}] (* A209817 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[3*n, n-1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jul 09 2012

A304134 Number of partitions of 5n into exactly n parts.

Original entry on oeis.org

1, 1, 5, 19, 64, 192, 532, 1367, 3319, 7657, 16928, 36043, 74287, 148702, 290071, 552767, 1031391, 1887776, 3395084, 6007963, 10474462, 18010859, 30574655, 51284587, 85064661, 139620591, 226914505, 365371100, 583164222, 923075291, 1449643115, 2259616844
Offset: 0

Views

Author

Seiichi Manyama, May 07 2018

Keywords

Comments

Also, the number of partitions of 4n in which every part is <=n.

Examples

			n | Partitions of 5n into exactly n parts
--+------------------------------------------------
1 | 5;
2 | 9+1, 8+2, 7+3, 6+4, 5+5;
3 | 13+1+1, 12+2+1, 11+3+1, 11+2+2, 10+4+1, 10+3+2,
  |  9+5+1,  9+4+2,  9+3+3,  8+6+1,  8+5+2,  8+4+3,
  |  7+7+1,  7+6+2,  7+5+3,  7+4+4,  6+6+3,  6+5+4,
  |  5+5+5;
====================================================================
n | Partitions of 4n in which every part is <=n.
--+-----------------------------------------------------------------
1 | 1+1+1+1;
2 | 2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1;
3 | 3+3+3+3, 3+3+3+2+1, 3+3+3+1+1+1, 3+3+2+2+2, 3+3+2+2+1+1,
  | 3+3+2+1+1+1+1, 3+3+1+1+1+1+1+1, 3+2+2+2+2+1, 3+2+2+2+1+1+1,
  | 3+2+2+1+1+1+1+1, 3+2+1+1+1+1+1+1+1, 3+1+1+1+1+1+1+1+1+1,
  | 2+2+2+2+2+2, 2+2+2+2+2+1+1, 2+2+2+2+1+1+1+1, 2+2+2+1+1+1+1+1+1,
  | 2+2+1+1+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1+1+1,
  | 1+1+1+1+1+1+1+1+1+1+1+1;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +b(n-i, min(i, n-i)))
        end:
    a:= n-> b(4*n, n):
    seq(a(n), n=0..35);  # Alois P. Heinz, May 07 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]];
    a[n_] := b[4n, n];
    a /@ Range[0, 35] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    {a(n) = polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^(4*n)))), 4*n)}

Extensions

More terms from Alois P. Heinz, May 07 2018
Showing 1-2 of 2 results.