A209849 Triangle read by rows: coefficients of polynomials in Sum_{k = 0..t} k^n * binomial(t,k).
1, 1, 1, 0, 3, 1, -2, 3, 6, 1, 0, -10, 15, 10, 1, 16, -30, -15, 45, 15, 1, 0, 112, -210, 35, 105, 21, 1, -272, 588, 28, -735, 280, 210, 28, 1, 0, -2448, 5292, -2436, -1575, 1008, 378, 36, 1, 7936, -18960, 4140, 20160, -14595, -1575, 2730, 630, 45, 1
Offset: 1
Examples
Repeatedly applying the operator x*d/dx to (1 + x)^n and evaluating the result at x = 1 yields Sum_{k = 0..n} k * binomial(n,k) = n * 2^(n-1). Sum_{k = 0..n} k^2 * binomial(n,k) = (n + n^2) * 2^(n-2). Sum_{k = 0..n} k^3 * binomial(n,k) = ( 3*n^2 + n^3) * 2^(n-3). Triangle begins: n\k| 1 2 3 4 5 6 7 8 = = = = = = = = = = = = = = = = = = = = = = = = = = 1 | 1 2 | 1 1 3 | 0 3 1 4 | -2 3 6 1 5 | 0 -10 15 10 1 6 | 16 -30 -15 45 15 1 7 | 0 112 -210 35 105 21 1 8 | -272 588 28 -735 280 210 28 1 ...
Links
- Seiichi Manyama, Rows n = 1..140, flattened
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. g := n -> 2^n*euler(n,1): BellMatrix(g, 9); # Peter Luschny, Jan 21 2016
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[2^# EulerE[#, 1]&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
PARI
T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 16 2025
-
Sage
# uses[bell_matrix from A264428] g = lambda n: sum((-2)^(n-k)*factorial(k)*stirling_number2(n,k) for k in (0..n)) bell_matrix(g, 9) # Peter Luschny, Jan 21 2016
-
Sage
def a_row(n): s = sum(2^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n)) return expand(s).list()[1:] for n in (1..10): print(a_row(n)) # Seiichi Manyama, Apr 16 2025
Formula
T(n,k) = Sum_{j = 0..n} (-1)^(n+k) * (-2)^(n-j) * Stirling2(n,j) * |Stirling1(j,k)|. [corrected by Seiichi Manyama, Apr 16 2025]
E.g.f.: F(x,t) := (1/2 + 1/2*exp(2*x))^t = (1 + tanh(-x))^(-t) = 1 + t*x + (t+t^2)*x^2/2! + (3*t^2+t^3)*x^3/3! + ... satisfies the delay differential equation d/dx(F(x,t)) = 2*F(x,t) - F(x,t-1).
Recurrence for row polynomials R(n,t): R(n+1,t) = t*(2*R(n,t) - R(n,t-1)) with R(0,t) = 1.
Let D be the backward difference operator D(f(x)) = f(x) - f(x-1). Then (x*D)^n(2^x) = 2^(x-n)*R(n,x). Cf. A079641.
Discrete Dobinski-type relation: R(n,x) = 1/2^x*Sum_{k = 0..inf} (2*k)^n*x*(x - 1)*...*(x - k + 1)/k!, valid for x = 0,1,2,.... and n >= 1.
Other Dobinski-type relations: exp(-x)*Sum_{k = 0..inf} R(n,k)*x^k/k! = n-th row polynomial of A075497.
exp(-x)*Sum_{k = 0..inf} R(n,k+1)*x^k/k! = n-th row polynomial of A154602.
i^(-n)*exp(i*x)*Sum_{k = 0..inf} R(n,-k)*(-i*x)^k/k! = n-th row polynomial of A059419 where i = sqrt(-1).
Writing x^[n] in place of R(n,x) we have the analog of the Bernoulli summation formula for powers of integers: Sum_{k = 1..n-1} k^[p] = 1/(p + 1)*Sum_{k = 0..p} 2^k*binomial(p+1,k)*B_k*n^[p+1-k], where B_k = [1,-1/2,1/6,0,-1/30,...] is the sequence of Bernoulli numbers.
n-th row sum R(n,1) equals 2^(n-1). Alternating row sums R(n,-1) starting [-1,0,2,0,-16,0,272,...] are signed tangent numbers - see A009006 and A155585.
R(n+1,2) = 2^n + 4^n = A063376(n).
The triangle of connection constants between the polynomials (x + 1)^[n] and x^[n] appears to be A119468 = (P^2 + 1)/2, where P denotes Pascal's triangle.
Also the Bell transform of the sequence 2^n*E(n,1), E(n,x) the Euler polynomials (A155585). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
From Peter Bala, Jun 26 2016: (Start)
With row and column numbering starting at 0:
E.g.f. is exp(x)/cosh(x)*((1 + exp(2*x))/2)^t = 1 + (1 + t)*x + (3*t + t^2)*x^2/2! + (-2 + 3*t + 6*t^2 + t^3)*x^3/3! + ....
Exponential Riordan array [d/dx(f(x)), f(x)] belonging to the Derivative subgroup of the Riordan group, where f(x) = log((1 + exp(2*x))/2) and df/dx = exp(x)/cosh(x) is the e.g.f. for A155585. (End)
T(n,k) = [x^k] Sum_{k=0..n} 2^(n-k) * Stirling2(n,k) * FallingFactorial(x,k). - Seiichi Manyama, Apr 16 2025
E.g.f. of column k (with leading zeros): f(x)^k / k! with f(x) = log(1 + (exp(2*x) - 1)/2). - Seiichi Manyama, Apr 18 2025
Comments